首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Previous studies have shown the high sorption affinity of polycyclic aromatic hydrocarbons by cork. The aim of the present work is to go further by investigating the sorption mechanism of polycyclic aromatic hydrocarbons (exemplified by phenanthrene) on cork and the availability of the chemical components (i.e. lignin, suberin, holocellulose and extractives) to retain phenanthrene.Two approaches were integrated to reach this objective: (1) statistical multivariate analysis to obtain correlations between the sorption capacity, measured as Koc, and the sorbent properties (i.e. polarity, acidic functional groups, %dichloromethane extractives, %ethanol and water extractives, %suberin, %lignin and %holocellulose) and (2) modeling calculations to obtain information on interaction at the molecular level.The statistical multivariate analysis demonstrated a strong and positive correlation between Koc and the lignin content as well as negative correlations between Koc and the phenolic groups and %dichloromethane extractives contents. The modeling study showed that the lignin–phenanthrene interaction is mostly hydrophobic in nature being largely determined by the π-stacking interaction between the aromatic groups of the interacting partners. This result justifies the observed correlations as dichloromethane extractives, being hydrophobic, compete with phenanthrene adsorption, whereas phenolic groups, as well as negatively charged groups, enhance the hydrophilic character of the sorbent surface, thus hindering the adsorption of phenanthrene.  相似文献   

2.
The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on three different biochars derived from agricultural/forestry wastes through pyrolysis at various temperatures (100 to 500 ºC) were investigated. In this study, the H2S breakthrough capacity was measured using a laboratory-characterized using pH and Fourier transform infrared spectroscopy analysis. The results obtained demonstrate that all biochars were effective in H2S sorption. The sorption capacity of the biochar for H2S removal is related to the pyrolysis temperature and pH of the surface. Certain threshold ranges of the pyrolysis temperature (from 100 to 500 ºC) and pH of the surface are presented. It also concluded that the sorption capacity (for removing H2S) of rice hull-derived biochar is the largest in three biochars (camphor-derived biochar, rice hull-derived biochar, and bamboo-derived biochar). These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S.Implications: This paper focuses on the adsorption of hydrogen sulfide (H2S) by biochars derived from wastes. The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on three different boichars derived from agricultural/forestry wastes through pyrolysis at various temperatures were investigated. In this study, the H2S breakthrough capacity was measured using laboratory characterization with pH and Fourier-transform infrared spectroscopy analysis. The results obtained demonstrate that all biochars were effective in H2S sorption. The sorption capacity of the biochar for H2S removal is related to the pyrolysis temperature and pH of the surface.  相似文献   

3.
Modifications of black carbons and their influence on pyrene sorption   总被引:2,自引:0,他引:2  
Zhang W  Wang L  Sun H 《Chemosphere》2011,85(8):1306-1311
Sorption of pyrene on black carbons (BCs) obtained by heating sawdust at two temperatures (400 and 700 °C, denoted as 400BC and 700BC, respectively), as well as on modified BCs (via oxidation, oximation, and hydrolysis) was studied to investigate the role of BC structural characteristics in sorption of hydrophobic organic compounds. Pyrene was bound strongly by 700BC and 400BC, with organic carbon normalized distribution coefficients (Koc) of 105.04-105.86 and 104.65-105.16, respectively, at equilibrium pyrene concentrations of 10-100 μg L−1. Both chemical composition and pore distribution of the two BCs changed after modifications, which led to changes in their sorption characteristics for pyrene. After modifications, the linearity of pyrene sorption isotherm increased for 700BC but decreased for 400BC. For 700BC, both oxidation and oximation reduced pyrene sorption, with Koc decreasing by 69.1-73.7% and 18.7-33.9%, respectively, whereas hydrolysis did not exert a significant influence. For 400BC, oxidation and hydrolysis reduced Koc by 2.28-25.9% and 29.2-33.9%, respectively, while oximation increased Koc. In most cases, the change in sorption capacity could be explained by the changes in C content and type, polarity, surface area, and micropore volume of the BCs; however, the role of conformation (the accessibility to sorption sites) could not be ignored.  相似文献   

4.
Bensulfuron-methyl sorption was studied in Andisol and Ultisol soils in view of their characteristic physical and chemical properties, presenting acidic pH and variable charge. Humic and fulvic acids (HA and FA) and humin (HUM) contributions were established. Sorption was studied by using two synthetic sorbents, an aluminum-silicate with iron oxide coverage and the same sorbent coated with humic acid. Freundlich model described Bensulfuron-methyl behavior in all sorbents (R2 0.969-0.998). Kf for soils (8.3-20.7 μg1−1/n mL1/n g−1) were higher than those reported in the literature. Organic matter, halloysite or kaolinite, and specific surface area contributed to the global process. The highest Kf for HA, FA and HUM were 539.5, 82.9, and 98.7 μg1−1/n mL1/n g−1. Model sorbents described the participation of variable charge materials with high adsorption capacity. The constant capacitance model was used to assess effects of Bensulfuron-methyl adsorption on the distribution of SOH, SOH2+ and SO sites of sorbents.  相似文献   

5.
Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg1???n ?L n ?kg?1, and the corresponding K foc values ranged from 56 to 3,725 mg1???n ?L n ?kg?1. Based on potential retention, the substrates may be classified as straw >> sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz >> tebuconazole–boscalid > napropamide >> MCPA–isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil–sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.  相似文献   

6.
Wen Y  Su LM  Qin WC  Fu L  He J  Zhao YH 《Chemosphere》2012,86(6):634-640
The hydrophobic parameter represented by the octanol/water partition coefficient (log P) is commonly used to predict the soil sorption coefficient (Koc). However, a simple non-linear relationship between log Koc and log P has not been reported in the literature. In the present paper, soil sorption data for 701 compounds was investigated. The results show that log Koc is linearly related to log P for compounds with log P in the range of 0.5-7.5 and non-linearly related to log P for the compounds in a wide range of log P. A non-linear model has been developed between log Koc and log P for a wide range of compounds in the training set. This model was validated in terms of average error (AE), average absolute error (AAE) and root-mean squared error (RMSE) by using an external test set with 107 compounds. Nearly the same predictive capacity was observed in comparison with existing models. However, this non-linear model is simple, and uses only one parameter. The best model developed in this paper is a non-linear model with six correction factors for six specific classes of compounds. This model can well predict log Koc for 701 diverse compounds with AAE = 0.37. The reasons for systemic deviations in these groups may be attributed to the difference of sorption mechanism for hydrophilic/polar compounds, low solubility for highly hydrophobic compounds, hydrolysis of esters in solution, volatilization for volatile compounds and highly experimental errors for compounds with extremely high or low sorption coefficients.  相似文献   

7.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   

8.
Wang L  Yang Z  Niu J 《Chemosphere》2011,82(6):895-900
In aqueous environment temperature is considered to play a significant role in the sorption process of polycyclic aromatic hydrocarbons (PAHs) and its influence on the sorption equilibrium is indicative of sorption energies and mechanisms. In this study, sorptions of five PAHs on three heterogeneous sorbents including one river sediment (YHR), one estuary sediment (YRD) and one treated sediment with organic matter removed (IM) were carried out at a range of temperature from 5 °C to 35 °C. Stronger sorptions were observed at lower temperatures, with the equilibrium sorption coefficient Kd increasing 2-5 times as the temperature decreases 30 °C. The increase of Kd value was attributed primarily to the change of PAH water solubility, which predicted 40-75% of the increase of Kd in the sorption process. To provide insight into the sorption mechanism, enthalpy change (ΔHS) for the sorption process was calculated and the values were observed to be negative for all of the interactions, suggesting that the exothermal sorption of PAHs inversely dependents on temperature. Based on the values of ΔHS, van der Waals forces were inferred as the main sorption mechanism for the PAHs, especially on the YHR sediment which contained more organic matter. For sorption of larger size PAHs on the sorbents with low organic matter, specific interactions were deduced to contribute to the overall sorption.  相似文献   

9.
The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on a biochar through pyrolysis at various temperatures (100 to 500°C) were investigated. The biochar used in the current study was derived from the camphor tree (Cinnamomum camphora). The samples were ground and sieved to produce particle sizes of 0.4 mm to 1.25 mm, 0.3 mm to 0.4 mm, and <0.3 mm. The H2S breakthrough capacity was measured using a laboratory-designed test. The surface properties of the biochar were characterized using pH and Fourier-transform infrared spectroscopy (FTIR) analysis. The results obtained demonstrate that all camphor-derived biochars were effective in H2S sorption. Certain threshold ranges of the pyrolysis temperature and surface pH were observed, which, when exceeded, have dramatic effects on the H2S adsorption capacity. The sorption capacity ranged from 1.2 mg/g to 121.4 mg/g. The biochar with 0.3 mm to 0.4 mm particle size possesses a maximum sorption capacity at 400°C. The pH and FTIR analysis results showed that carboxylic and hydroxide radical groups were responsible for H2S sorption. These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S.

Implications: This paper studies the potential of biochar derived by camphor to adsorb hydrogen sulfide at environmentally sustainable temperatures. The different sizes of the biochars and the different temperatures of pyrolysis for the camphor particle have a great impact on adsorption of hydrogen sulfide.  相似文献   

10.
Background, aim, and scope  Herbicide fate and its transport in soils and sediments greatly depend upon sorption–desorption processes. Quantitative determination of herbicide sorption–desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment–water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption–desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption–desorption were also identified. Materials and methods  The sorption–desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption–desorption was examined by simple correlation analysis. Results  Sorption of acetochlor was expressed as the distribution coefficient (K d). K d values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K d values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. Discussion  Since the strong linear relationship between the K d values of acetochlor and the organic carbon content was already released, the corresponding K oc values were calculated. Considerable variation in the K oc values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K oc values and the ratio of humic acid carbon to fulvic acid carbon (CHA/CFA). Conclusions  When comparing acetochlor sorption in a range of soils and sediments, different K d values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K d values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K oc values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. Recommendations and perspectives  This study examined the sorption–desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the CHA/CFA ratio were sufficient predictors of the acetochlor sorption–desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.  相似文献   

11.
Beta blockers are widely used pharmaceuticals that have been detected in the environment. Interactions between beta blockers and dissolved organic matter (DOM) may mutually alter their environmental behaviors. To assess this potential, propranolol (PRO) was used as a model beta blocker to quantify the complexation with DOM from different sources using the fluorescence quenching titration method. The sources of studied DOM samples were identified by excitation–emission matrix spectroscopy (EEMs) combined with fluorescence regional integration analysis. The results show that PRO intrinsic fluorescence was statically quenched by DOM addition. The resulting binding constants (log K oc) ranged from 3.90 to 5.20, with the surface-water-filtered DOM samples claiming the lower log K oc and HA having the highest log K oc. Log K oc is negatively correlated with the fluorescence index, biological index, and the percent fluorescence response (P i,n) of protein-like region (P I,n) and the P i,n of microbial byproduct-like region (P II,n) of DOM EEMs, while it is correlated positively with humification index and the P i,n of UVC humic-like region (P III,n). These results indicate that DOM samples from allochthonous materials rich in aromatic and humic-like components would strongly bind PRO in aquatic systems, and autochthonous DOM containing high protein-like components would bind PRO more weakly.  相似文献   

12.
The paper reports the kinetics and adsorption isotherm modeling for imidacloprid (IMIDA) and azoxystrobin (AZOXY) in rice straw (RS)/corn cob (CC) and peat (P)/compost (C) based biomixtures. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intraparticle diffusion models were used to describe the kinetics. The adsorption data were subjected to the Langmuir and the Freundlich isotherms. Results (r2Adj values) suggested that the modified Elovich model was the best suited to explain the kinetics of IMIDA sorption while different models explained AZOXY sorption kinetics in different biomixtures (PFO in RS?+?C and RS?+?P; PSO in CC?+?P and Elovich in CC?+?C). Biomixtures varied in their capacity to adsorb both pesticides and the adsorption coefficient (Kd) values were 116.8–369.24 (AZOXY) and 24.2–293.4 (IMIDA). The Freundlich isotherm better explained the sorption of both pesticides. Comparison analysis of linear and nonlinear method for estimating the Freundlich adsorption constants was made. In general, r2Adj values were higher for the nonlinear fit (AZOXY?=?0.938–0.982; IMIDA?=?0.91–0.970) than the linear fit (AZOXY?=?0.886–0.993; IMIDA?=?0.870–0.974) suggesting that the nonlinear Freundlich equation better explained the sorption. The rice straw-based biomixtures performed better in adsorbing both the pesticides and can be used in bio-purification systems.  相似文献   

13.

The objective of this study was to evaluate the sorption efficiency of eight biochars, made from Miscanthus x giganteus cultivated on contaminated agricultural soil, in aqueous solutions contaminated with metals alone or mixed with polycyclic aromatic hydrocarbons. These biochars were produced in different pyrolysis conditions (temperature, 400/600 °C; heating rate, 5/10 °C min−1; duration, 45/90 min) and compared with an uncontaminated commercialized biochar made of wood. The physicochemical characterization of the Miscanthus biochars confirmed the impact of the pyrolysis on the biochar parameters with substantial differences between the biochars in terms of pH, cation exchange capacity, and specific surface area. The sorption experiment showed higher sorption efficiency of Cd, Pb, and Zn for the Miscanthus biochars produced at 600 °C compared with the biochars produced at 400 °C when the aqueous solutions were mono- or multicontaminated. Furthermore, the desorption study showed that the sorption process was largely irreversible. Therefore, the high sorption capacity of Miscanthus biochars and the low sorption reversibility confirmed that these biochars are a suitable sorbent for metals.

  相似文献   

14.
Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 °C and 700 °C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 °C generally showed a greater ability at enhancing a soil’s sorption ability than that prepared at 350 °C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar.  相似文献   

15.
Low cost agro-waste biosorbents namely eucalyptus bark (EB), corn cob (CC), bamboo chips (BC), rice straw (RS) and rice husk (RH) were characterized and used to study atrazine and imidacloprid sorption. Adsorption studies suggested that biosorbents greatly varied in their pesticide sorption behaviour. The EB was the best biosorbent to sorb both atrazine and imidacloprid with KF values of 169.9 and 85.71, respectively. The adsorption isotherm were nonlinear in nature with slope (1/n) values <1. The Freundlich constant Correlating atrazine/imidacloprid sorption parameter [KF.(1/n)] with the physicochemical properties of the biosorbents suggested that atrazine adsorption correlated significantly to the aromaticity, polarity, surface area, fractal dimension, lacunarity and relative C-O band intensity parameters of biosorbents. Probably, both physisorption and electrostatic interactions were responsible for the pesticide sorption. The eucalyptus bark can be exploited as low cost adsorbent for the removal of these pesticides as well as a component of on-farm biopurification systems.  相似文献   

16.
Single- and bi-solute sorption of organic compounds [1,3-dichlorbenzene (DCB), 1,3-dinitrobenzene (DNB) and 2,4-dichlorophenol (DCP)] on ground tire rubber and its chars was studied. The chars were prepared by pyrolyzing tire rubber at different temperatures (200-800 °C). Their surface area, aromaticity and hydrophobicity increase greatly with pyrolytic temperature, and the polymeric phase is partly converted into a condensed phase. The sorption of DNB and DCP increases with pyrolytic temperature and is characterized by a transition from a partition dominant to an adsorption dominant process. However, the sorption of DCB linearly decreases with the pyrolytic temperature. The enhanced adsorption of DNB and DCP on carbonized phase is primarily attributed to nonhydrophobic interactions such as π-π electron-donor-acceptor interactions and/or H bonding. The higher partition of DCB to polymeric phase is attributed to its high hydrophobicity. Competitive sorption between DCB and DCP on the tire chars is highly dependent on dissociation of the latter.  相似文献   

17.
Simazine is a s-triazine herbicide that has been applied worldwide for agriculture. This herbicide is the second most commonly detected pesticide in surface and groundwater in the United States, Europe and Australia. In this study, simazine adsorption behaviour was studied in two agricultural soils of the Aconcagua valley, central Chile. The two studied soils were soil A (loam, 8.5% organic matter content) and soil B (clay-loam, 3.5% organic matter content). Three times higher simazine adsorption capacity was observed in soil A (68.03 mg kg−1) compared to soil B (22.03 mg kg−1). The simazine adsorption distribution coefficients (Kd) were 9.32 L kg−1 for soil A and 7.74 L kg−1 for soil B. The simazine adsorption enthalpy in soil A was −21.0 kJ mol−1 while in soil B the adsorption enthalpy value was −11.5 kJ mol−1. These results indicate that simazine adsorption process in these soils is exothermic, governing H bonds the adsorption process of simazine in both the loam and clay-loam soils. These results and the potentiometric profiles of both soils, suggest that simazine adsorption in soil A is mainly governed by simazine–organic matter interactions and in soil B by simazine–clay interactions. The understanding of simazine sorption–desorption processes is essential to determine the pesticide fate and availability in soil for pest control, biodegradation, runoff and leaching.  相似文献   

18.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   

19.
Sun K  Jin J  Gao B  Zhang Z  Wang Z  Pan Z  Xu D  Zhao Y 《Chemosphere》2012,88(5):577-583
The potential for negative effects caused by endocrine disrupting chemicals (EDCs) release into the environment is a prominent concern and numerous research projects have investigated possible environmental fate and toxicity. However, their sorption behavior by size fractions of soil and sediment has not been systematically represented. The sorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) by different size fractions of soil and sediment were investigated. Sorption isotherms of EE2, BPA, and Phen by size fractions of soil (SL) and sediment (ST) were well fitted to the Freundlich model. The positive correlation between EE2, BPA and Phen sorption capacity (log Kd) of size fractions and their organic carbon (OC) content suggests that OC of size fractions in SL and ST should regulate sorption, while the surface area (SA) of size fractions may not account for sorption of EE2, BPA and Phen. Each size fraction of ST had higher sorption capacity (Kd or KOC) of EE2 and BPA than that of SL due to their difference in the polarity of organic matter (OM) between terrestrial and aquatic sources. Sorption capacity logKd for size fractions of SL and ST did not follow the order: clay > silt > sand due to the difference in OM abundance and composition between the size fractions. Large particle fractions of ST contributed about 80% to the overall sorption for any EE2, BPA, and Phen. This study was significant to evaluate size fractions of soil and sediment as well as their associated OM affecting EE2 and BPA sorption processes.  相似文献   

20.
Lu C  Bjerg PL  Zhang F  Broholm MM 《Chemosphere》2011,83(11):1467-1474
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (Kd values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (Kd = 0.84-2.45 L kg−1), followed by trichloroethylene (TCE, Kd = 0.62-0.96 L kg−1), cis-dichloroethylene (cis-DCE, Kd = 0.17-0.82 L kg−1) and vinyl chloride (VC, Kd = 0.12-0.36 L kg−1). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (Kd = 0.2-0.45 L kg−1), followed by 1,1-dichloroethane (1,1-DCA, Kd = 0.16-0.24 L kg−1) and chloroethane (CA, Kd = 0.12-0.18 L kg−1). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (log Kow) correlated slightly better with log Kd values than log Koc values indicating that the Kd values may be independent of the actual organic carbon content (foc). The estimated log Koc or log Kd for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific Kd values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes - in line with previous studies on PCE and TCE - suggest that sorption in clayey tills could be higher than typically expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号