首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The worldwide used herbicide dichlobenil (2,6-dichlorobenzonitrile) has resulted in widespread presence of its metabolite 2,6-dichlorobenzamide (BAM) in surface water and groundwater. To evaluate the potential for natural attenuation of this BAM pollution in groundwater, we studied the degradation of BAM and dichlobenil in 16 samples of clayey till, unconsolidated sand and limestone, including sediments from both oxidized and reduced conditions. The degradation of dichlobenil occurred primarily in the upper few meters below surface, although dichlobenil was strongly sorbed to these sediments. However, the degradation of dichlobenil to BAM could not be correlated to either sorption, water chemistry, composition of soils or sediments. Degradation of dichlobenil to BAM was limited (<2% degraded) in the deeper unsaturated zones, and no degradation was observed in aquifer sediments. This illustrates, that dichlobenil transported to aquifers does not contribute to the BAM-contamination in aquifers. A small, but significant degradation of BAM was observed in the upper part of the unsaturated zones in sandy sediments, but no degradation was observed in the clayey till sediment or in the deeper unsaturated zones. The insignificant degradation of BAM in aquifer systems shows that BAM pollution detected in aquifers will appear for a long time; and consequently the potential for natural attenuation of BAM in aquifer systems is limited.  相似文献   

2.
BAM (2,6-dichlorobenzamide) is a metabolite of pesticide dichlobenil and a common groundwater contaminant. Dichlobenil and BAM half-lives were determined in five Finnish subsurface deposits and in topsoil. Aerobic and anaerobic conditions with sterilized controls were included in this 1.4-year incubation experiment. In subsurface deposits, dichlobenil half-life varied from 157 days to no degradation and that of BAM from 314 days to no degradation. Microbes and oxygen enhanced dichlobenil and BAM dissipation rates in some deposits. However, dichlobenil and BAM concentrations were most significantly affected by deposit characteristics, especially carbon and nitrogen amounts. Also low pH, cadmium, iron, zinc, manganese and lead correlated with low dichlobenil and/or BAM concentrations. In mineral topsoil, dissipation was faster with half-lives of 41–54 days for dichlobenil, and 182–261 days for BAM. Dichlobenil was depleted completely in surface soil, but BAM was not dissipated below 55–81 % of the initial concentration. Generally, dichlobenil and BAM dissipation in samples from the northern boreal region was similar to that reported for the temperate region. BAM was persistent in topsoil and subsurface deposits, indicating long-term persistence problems in groundwater also within the northern boreal region.  相似文献   

3.
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges–Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 µg/L to 191 µg/L with a mean concentration of 33 µg/L. Groundwater is mainly Ca–HCO3 type with high concentrations of dissolved As, Fe, and Mn, but low level of SO4. The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 µg/L. Deeper aquifer (> 100 m depth) has a mean arsenic concentration of 18 µg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.  相似文献   

4.
Mineralisation of the groundwater contaminant 2,6-dichlorobenzamide (BAM), a metabolite from the herbicide 2,6-dichlorobenzonitrile (dichlobenil), was studied in soil samples obtained from 39 locations previously exposed to dichlobenil. Rapid BAM mineralisation was detected in samples from six locations with 5.2-64.6% of the added BAM mineralised within 48-50 days. From one location rapid BAM mineralisation was observed in soil samples down to a depth of 2 m below the surface. One location with fast BAM mineralisation showed significant dichlobenil degradation activity with 25.5% of the added dichlobenil being mineralised within 50 days. By inoculating soil showing the fastest mineralisation of BAM into a mineral medium with BAM as the only carbon and nitrogen source an enrichment culture was established. Community analysis based on extracted DNA revealed a change of the bacterial community but without any clear indication of key members within the BAM-mineralising culture. Parallel cultivation resulted for the first time in the isolation of a BAM-mineralising bacterium, identified as an Aminobacter sp.  相似文献   

5.
Vertical variation in sorption and mineralization potential of mecoprop (MCPP), isoproturon and acetochlor were investigated at low concentrations (μg-range) at the cm-scale in unsaturated sub-surface limestone samples and saturated sandy aquifer samples from an agricultural catchment in Brévilles, France. From two intact core drills, four heterogenic limestone sections were collected from 4.50 to 26.40m below surface (mbs) and divided into 12 sub-samples of 8-25cm length, and one sandy aquifer section from 19.20 to 19.53m depth divided into 7 sub-samples of 4-5cm length. In the sandy aquifer section acetochlor and isoproturon sorption increased substantially with depth; in average 78% (acetochlor) and 61% (isoproturon) per 5cm. Also the number of acetochlor and isoproturon degraders (most-probable-number) was higher in the bottom half of the aquifer section (93->16000/g) than in the upper half (4-71/g). One 50cm long limestone section with a distinct shift in color showed a clear shift in mineralization, number of degraders and sorption: In the two brown, uppermost samples, up to 31% mecoprop and up to 9% isoproturon was mineralized during 231 days, the numbers of mecoprop and isoproturon degraders were 1300 to >16000/g, and the sorption of both isoproturon and acetochlor was more than three times higher, compared to the two deeper, grayish samples just below where mineralization (≤4%) and numbers of degraders (1-520/g) were low for all three herbicides. In both unsaturated limestone and sandy aquifer, variations and even distinct shifts in both mineralization, number of specific degraders and sorption were seen within just 4-15cm of vertical distance. A simple conceptual model of herbicides leaching to groundwater through a 10m unsaturated limestone was established, and calculations showed that a 30cm active layer with the measured sorption and mineralization values hardly impacted the fate of the investigated herbicides, whereas a total thickness of layers of 1m would substantially increase natural attenuation.  相似文献   

6.
A series of laboratory scale batch slurry experiments were conducted in order to establish a data set for oxidant demand by sandy and clayey subsurface materials as well as to identify the reaction kinetic rates of permanganate (MnO(4)(-)) consumption and PCE oxidation as a function of the MnO(4)(-) concentration. The laboratory experiments were carried out with 31 sandy and clayey subsurface sediments from 12 Danish sites. The results show that the consumption of MnO(4)(-) by reaction with the sediment, termed the natural oxidant demand (NOD), is the primary reaction with regards to quantification of MnO(4)(-) consumption. Dissolved PCE in concentrations up to 100 mg/l in the sediments investigated is not a significant factor in the total MnO(4)(-) consumption. Consumption of MnO(4)(-) increases with an increasing initial MnO(4)(-) concentration. The sediment type is also important as NOD is (generally) higher in clayey than in sandy sediments for a given MnO(4)(-) concentration. For the different sediment types the typical NOD values are 0.5-2 g MnO(4)(-)/kg dry weight (dw) for glacial meltwater sand, 1-8 g MnO(4)(-)/kg dw for sandy till and 5-20 g MnO(4)(-)/kg dw for clayey till. The long term consumption of MnO(4)(-) and oxidation of PCE can not be described with a single rate constant, as the total MnO(4)(-) reduction is comprised of several different reactions with individual rates. During the initial hours of reaction, first order kinetics can be applied, where the short term first order rate constants for consumption of MnO(4)(-) and oxidation of PCE are 0.05-0.5 h(-1) and 0.5-4.5 h(-1), respectively. The sediment does not act as an instantaneous sink for MnO(4)(-). The consumption of MnO(4)(-) by reaction with the reactive species in the sediment is the result of several parallel reactions, during which the reaction between the contaminant and MnO(4)(-) also takes place. Hence, application of low MnO(4)(-) concentrations can cause partly oxidation of PCE, as the oxidant demand of the sediment does not need to be met fully before PCE is oxidised.  相似文献   

7.
Background, aim, and scope  The primary aim of this study was to explore the variations in PCDD/F levels and homologue profiles of Baltic surface sediments by comprehensively analyzing polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in samples from a large number of sites, encompassing not only previously known hotspot areas, but also sites near other potential PCDD/F sources, in pristine reference areas (in which there was no industrial activity) and offshore sites. Materials and methods  Surface sediment samples (146 in total) were collected at various points along the Swedish coast and offshore areas. In addition, bulk deposition was sampled, monthly, at a single site in northern Sweden during 1 year. The concentrations of tetra- through octa-substituted CDD/Fs were determined in both matrices. Results  Highly elevated concentrations of PCDD/Fs were found at many sites in coastal areas and concentrations were also slightly elevated in some offshore areas. Homologue profiles varied substantially amongst samples from coastal sites, while those from offshore and other pristine sediments were relatively similar. The offshore sediments showed different profiles from those observed in the deposition samples. Sediment levels of PCDD/Fs were not generally significantly correlated to organic carbon levels, except in some pristine areas. Comparison of data obtained in this and previous studies suggest that both their levels and profiles are similar today to those observed 20 years ago in coastal and offshore areas. The only detected trend is that their levels appear to have decreased slightly in the offshore area of the Bothnian Sea. Discussion  The localization of hotspot areas along the coast, the lack of consensus between PCDD/F profiles of sediments and general background, and their weak correlations with organic carbon suggest that PCDD/Fs in the study area largely originate from local/regional emissions. However, due to complicating factors such as sediment dynamics and land upheaval, it is not possible to conclude whether these pollutants derive from recent emissions or from a combination of recent emissions and re-distribution of previous inputs. Conclusions  The results show that: elevated levels of PCDD/Fs are present in both coastal and offshore areas of the Baltic Sea, the major hotspots are close to the shore, and there are large variations in profiles, indicating that local emissions are (or have been) the major causes of pollution. Recommendations and perspectives  In order to identify other hotspot areas and trace sources, comprehensive analysis of PCDD/Fs in surface sediments is needed in all areas of the Baltic Sea that have not been previously investigated. The high levels of PCDD/Fs observed in surface sediments also indicate a need to elucidate whether they are due mainly to current emissions or a combination of recent pollution and re-distribution of historically deposited pollutants. To do so, better understanding of sediment dynamics and present-day inputs, such as riverine inputs, industrial effluents, and leakage from contaminated soil is required. There are indications that contaminated sediments have a regional impact on fish contamination levels. However, as yet there is no statistically robust evidence linking contaminated sediments with elevated levels in Baltic biota. It should also be noted that the Baltic Sea is being massively invaded by the deep-burrowing polychaete Marenzielleria ssp., whose presence in sediments has been shown to increase water concentrations of hydrophobic pollutants. In awareness of this, it is clear that high levels in sediments cannot be ignored in risk assessments. In order to investigate the emission trends more thoroughly, analysis of PCDD/Fs in offshore sediment cores throughout the Baltic Sea is also recommended. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
This is the first detailed study of metabolite production during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenil). Degradation of dichlobenil and three potential metabolites: 2,6-dichlorobenzamide (BAM), 2,6-dichlorobenzoic acid (2,6-DCBA) and ortho-chlorobenzamide (OBAM) was studied in soils either previously exposed or not exposed to dichlobenil using a newly developed HPLC method. Dichlobenil was degraded in all four soils; BAM and 2,6-DCBA were only degraded in soils previously exposed to dichlobenil (100% within 35-56 days and 85-100% in 56 days, respectively), and OBAM in all four soils (25-33% removal in 48 days). BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid. BAM was rapidly mineralized in previously exposed soils only. All potential metabolites and the finding that BAM was a dead-end metabolite of dichlobenil in soils not previously exposed to dichlobenil needs to be included in risk assessments of the use of dichlobenil.  相似文献   

9.
A landfill leachate affected aquifer was investigated with respect to the geology and sediment geochemistry (solid organic carbon, cation exchange capacity, oxidation capacity, reduced iron and sulfur species) involving 185 sediment samples taken along a 305-m-long and 10–12-m-deep transect downgradient from the landfill. The geology showed two distinct sand layers (upper Quaternary, Weichselian and a lower Tertiary, Miocene) sandwiching thin layers of silt/clay deposits, peat and brown coal. The organic carbon content (TOC) and the cation exchange capacity (CEC) of the sandy sediments were low (TOC, 100–300 μg C (g DW)−1 ; CEC, 0.1–0.5 meq per 100 g DW) and correlated fairly well with the geology. Processes in the contaminant plume caused depletion of oxidation capacity and precipitation of reduced iron and sulfur species. However, some of these parameters were also affected by the geology, e.g. the oxidation capacity (OXC) was significantly higher in the Quaternary layer (OXC, 14–35 μeq g DW−1) than in the Tertiary sand layer (OXC, <5 μeq g DW−1). The intermediate layers (silt/clay and brown coal) have significantly higher values of most of the parameters investigated. This work demonstrates the need for a small scale geological model and a detailed mapping of the geochemistry of the sediments in order to distinguish impacts caused by the contaminant plumes from natural variations in the aquifer geochemistry.  相似文献   

10.
In order to determine whether natural attenuation of chlorinated ethenes by microbial activity occurs in aquitards, sediments at a site contaminated with tetrachloroethene were vertically studied by drilling. The distribution of microbes (Dehalococcoides group and anaerobic hydrogen producers) and the ability of the sediments to sustain microbial dechlorination were determined in an aquitard as well as in an aquifer. Close-spaced sampling revealed the existence of large populations of Dehalococcoides and H(2)-producing bacteria, especially in the organic-rich clayey aquitard rather than in the aquifer. The vinyl chloride reductase gene was also detected in the clay layer. Furthermore, incubation experiments indicated that the clay sediment could sustain transformations of tetrachloroethene at least to vinyl chloride. In contrast, no significant transformation was observed in the aquifer sand. Our results indicate that dechlorination of tetrachloroethene by bacteria can take place in an organic-rich clayey aquitard, and that organic-rich clay may also be important in the natural attenuation in an adjacent aquifer, possibly supplying a carbon source or an electron donor.  相似文献   

11.
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.  相似文献   

12.
Twenty-seven surface sediment samples were collected from the mainstream and eight tributaries of the Wuhan reach of the Yangtze River, China, in 2005, in order to assess the distribution, possible sources, and potential risk of polychlorinated biphenyls (PCBs) in the environment. The total concentrations of PCBs (the sum of 39 congeners) ranged from 1.2 to 45.1 ng g−1 dry weight, with a mean value of 9.2 ng g−1. Sediment samples with the highest PCB concentrations came from the tributary sites, which are closer to PCB sources. Conversely, PCB concentrations in the sediment from the mainstream sites of Yangtze River were relatively low. The observed PCB levels were higher than those found in the sediments of other rivers in China, but lower than those in river sediments from other urban areas and harbors around the world. Low-chlorinated PCBs, dominated by tetra-PCBs and penta-PCBs, were identified as being prevalent in the surface sediments. Correlation analyses between the PCBs and the geochemistry and heavy metal content of the sediments suggest that the washing of these compounds from the land into the river by floods and heavy rains, or industrial wastewater and domestic sewage, may be the major sources of the PCBs. According to established sediment quality guidelines, the risk of adverse biological effects from the levels of PCBs recorded at most of the studied sites should be insignificant, although the higher concentrations at other sites could cause acute biological damage.  相似文献   

13.
The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO2 and O2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca(2+)-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban development has caused drastic changes in the gas content in the unsaturated zone and in groundwater. Carbon dioxide was intensively generated by nitrification-denitrification processes, by hydration of urea, to a lesser degree by oxidation of organic matter, and probably by anoxic biodegradation of organics. Between 1934 and 1948, concentrations of CO2 in unsaturated sediment air rose from 3.2% to 7.6%. In the unsaturated zone, oxygen consumption for oxidation of ammonium and organic matter lowered O2 concentrations in sediment air to unusually low values of 3.9-12.9%. Nitrification in the urban unsaturated zone could thus serve as a pump, sucking in atmospheric oxygen at a rate of about 0.3-0.5 g m-2 day-1. The extreme concentrations of CO2 and O2 in unsaturated sediments have been preserved due to production and consumption of gas under conditions of diminishing areas open to the atmosphere, uncovered by buildings and by roads.  相似文献   

14.
Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment materials (pure clays and sea sand), with sediments treated to reduce their organic carbon content, and with field marine and estuarine sediments. C12-2-LAS was used as a model compound. Sorption to the clays montmorillonite and kaolinite resulted in non-linear isotherms very similar for both clays. When reducing the organic content, sorption coefficients decreased proportionally to the fraction removed in fine grain sediments but this was not the case for the sandy sediment. The correlation of the sediment characteristics with the sorption coefficients at different surfactant concentrations showed that at concentrations below 10 μg C12-2-LAS/L, the clay content correlated better with sorption, while the organic fraction became more significant at higher concentrations.  相似文献   

15.
Recent laboratory and field studies have shown that food-grade edible oils can be injected into the subsurface for installation of in-situ permeable reactive barriers. However to be effective, the oil must be distributed out away from the oil injection points without excessive permeability loss. In this work, we examine the distribution of soybean oil in representative aquifer sediments as non-aqueous phase liquid oil (NAPL oil) or as an oil-in-water emulsion. Laboratory columns packed with sands or clayey sands were flushed with either NAPL oil or a soybean emulsion followed by plain water, while monitoring permeability loss and the final oil residual saturation. NAPL oil can be injected into coarse-grained sands. However NAPL injection into finer grained sediments requires high injection pressures which may not be feasible at some sites. In addition, NAPL injection results in high oil residual saturations and moderate permeability losses. In contrast, properly prepared emulsions can be distributed through sands with varying clay content without excessive pressure buildup, low oil retention and very low to moderate permeability loss. For effective transport, the emulsion must be stable, the oil droplets must be significantly smaller than the mean pore size of the sediment and the oil droplets should have a low to moderate tendency to stick to each other and the aquifer sediments. In our work, oil retention and associated permeability loss increased with sediment clay content and with the ratio of droplet size to pore size. For sandy sediments, the permeability loss is modest (0-40% loss) and is proportional to the oil residual saturation.  相似文献   

16.
Six hydrophobic alkylphenolic compounds were investigated for the first time simultaneously in four different matrices in the Danube River. Maximum sediment concentrations were 2.83, 2.10, 0.28, and 0.035 mg kg−1 for nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate and octylphenol. Maximum levels in suspended particulate matter (SPM) were 0.18, 0.12, 0.10, and 0.003 mg kg−1. No correlation between concentrations in SPM and sediments was found. Octylphenol monoethoxylate and octylphenol diethoxylate were recorded only in sediment at one location. In mussels and water only nonylphenol and octylphenol were found. Nonylphenol concentrations in mussels (up to 0.34 mg kg−1) correlate with concentrations found in SPM and indicate a slight bioaccumulation. Concentrations in water were close to the limit of quantification. We assume in situ formation of nonylphenol monoethoxylate and nonylphenol in sediments at some locations. In some cases nonylphenol in sediments exceeded the provisional EU environmental quality standards.  相似文献   

17.
《Chemosphere》2013,93(5):805-812
Chronic toxicity and bioaccumulation of decamethylcyclopentasiloxane (D5) to Hyalella azteca was examined in a series of spiked sediment exposures. Juvenile H. azteca were exposed for 28 d (chronic) to a concentration series of D5 in two natural sediments of differing organic carbon content (O.C.) and particle size composition. The chronic, LC50s were 191 and 857 μg D5 g−1 dry weight for Lakes Erie (0.5% O.C.) and Restoule (11% O.C.) respectively. Inhibition of growth only occurred with the L. Restoule spiked sediment with a resultant EC25 of 821 μg g−1 dw. Lethality was a more sensitive endpoint than growth inhibition. Biota sediment accumulation factors (BSAFs, 28 d) were <1 indicating that D5 did not bioconcentrate based on lipid normalized tissue concentrations and organic carbon normalized sediment concentrations. Organic carbon (OC) in the sediment appeared to be protective, however normalization to OC did not normalize the toxicity. Normalization of D5 concentrations in the sediments to sand content did normalize the toxicity and LC50 values of 3180 and 3570 μg D5 g−1 sand dw were determined to be statistically the same.  相似文献   

18.
Contaminated sediments in the St. Lawrence River remain a difficult problem despite decreases in emissions. Here, sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and diffusion from the sediment to the overlying water was 17.5 ± 10.6 SE ng cm−2 yr−1 for THg and 3.8 ± 1.7 SE ng cm−2 yr−1 for MeHg. These fluxes were very small when compared to the particle-bound mercury flux accumulating in the sediment (183 ± 30 SE ng cm−2 yr−1). Studies have reported that fish from the westernmost site have higher Hg concentrations than fish collected from the other two sites of the Cornwall Area of Concern, which could not be explained by differences in the Hg flux or THg concentrations in sediments, but the highest concentrations of sediment MeHg, and the greatest proportions of MeHg to THg in both sediment and pore water were observed where fish had highest MeHg concentrations.  相似文献   

19.
Comparability of sediment analyses for semivolatile organic substances is still low. Neither screening of the sediments nor organic-carbon based normalization is sufficient to obtain comparable results. We are showing the interdependency of grain-size effects with inside-sediment organic-matter distribution for PAH, PCB and organochlorine compounds. Surface sediment samples collected by Van-Veen grab were sieved and analyzed for 16 PAH, 6 PCB and 18 organochlorine pesticides (OCP) as well as organic-matter content. Since bulk concentrations are influenced by grain-size effects themselves, we used a novel normalization method based on the sum of concentrations in the separate grain-size fractions of the sediments. By calculating relative normalized concentrations, it was possible to clearly show underlying mechanisms throughout a heterogeneous set of samples. Furthermore, we were able to show that, for comparability, screening at <125 μm is best suited and can be further improved by additional organic-carbon normalization.  相似文献   

20.
The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号