首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In contaminated soils, excessive concentrations of metals and their high mobility pose a serious environmental risk. A suitable soil amendment can minimize the negative effect of metals in soil. This study investigated the effect of different biochars on metal (Cu, Pb, Zn) immobilization in industrial soil. Biochars produced at 300 and 600 °C from conventional (MS, maize silage; WP, wooden pellets) and alternative (SC, sewage sludge compost; DR, digestate residue) feedstocks were used as soil amendments at a dosage of 10 % (w/w). The type of feedstock and pyrolysis temperature affected the properties of the biochars and their ability to immobilize metal in soil. Compared to production at 300 °C, all biochars produced at 600 °C had higher pH (6.2–10.7), content of ash (7.2–69.0 %) and fixed carbon (21.1–56.7 %), but lower content of volatile matter (9.7–37.2 %). All biochars except DR biochar had lower dissolved organic carbon (DOC) content (1.4–2.3 g C/L) when made at 600 °C. Only MS and SC biochars had higher cation exchange capacity (25.2 and 44.7 cmol/kg, respectively) after charring at 600 °C. All biochars contained low concentrations of Cd, Cu, Ni, Pb and Zn; Cd was volatilized to the greatest extent during pyrolysis. Based on FTIR analysis and molar ratios of H/C and O/C, biochars had a greater degree of carbonization and aromaticity after charring at 600 °C. The efficiency of the biochars in metal immobilization depended mainly on their pH, ash content, and concentration of DOC. SC and DR biochars were more effective for Cu and Zn immobilization than MS and WP biochars, which makes them attractive options for large-scale soil amendment.  相似文献   

2.
Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 °C and 700 °C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 °C generally showed a greater ability at enhancing a soil’s sorption ability than that prepared at 350 °C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar.  相似文献   

3.
The amendment of carbonaceous materials such as biochars and activated carbons is a promising in situ remediation strategy for both organic and inorganic contaminants in soils and sediments. Mechanistic understandings in sorption of heavy metals on amended soil are necessary for appropriate selection and application of carbonaceous materials for heavy metal sequestration in specific soil types. In this study, copper sorption isotherms were obtained for soils having distinct characteristics: clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. The amendment of acidic pecan shell-derived activated carbon and basic broiler litter biochar lead to a greater enhancement of copper sorption in Norfolk soil than in San Joaquin soil. In Norfolk soil, the amendment of acidic activated carbon enhanced copper sorption primarily via cation exchange mechanism, i.e., release of proton, calcium, and aluminum, while acid dissolution of aluminum cannot be ruled out. For San Joaquin soil, enhanced copper retention by biochar amendment likely resulted from the following additional mechanisms: electrostatic interactions between copper and negatively charged soil and biochar surfaces, sorption on mineral (ash) components, complexation of copper by surface functional groups and delocalized π electrons of carbonaceous materials, and precipitation. Influence of biochar on the release of additional elements (e.g., Al, Ca) must be carefully considered when used as a soil amendment to sequester heavy metals.  相似文献   

4.
Oxalate and root exudates enhance the desorption of p,p'-DDT from soils   总被引:3,自引:0,他引:3  
Luo L  Zhang S  Shan XQ  Zhu YG 《Chemosphere》2006,63(8):1273-1279
The abiotic desorption of p,p'-DDT from seven Chinese soils spiked with p,p'-DDT and the effects of oxalate at 0.001-0.1M and the root exudates of maize, wheat, and ryegrass were evaluated using batch experiments. Soil organic carbon played a predominant role in the retention of DDT. Oxalate significantly increased the desorption of p,p'-DDT, with the largest increments ranging from 11% to 54% for different soils. Oxalate addition also resulted in the increased release of dissolved organic carbon and inorganic ions from soils. Root exudates had similar effects to those of oxalate. Root exudates significantly increased DDT desorption from the soils, and the general trend was similar among the plant species studied for all the soils (p > 0.05). Low molecular weight dissolved organic carbon amendments caused partial dissolution of the soil structure, such as the organo-mineral linkages, resulting in the release of organic carbon and metal ions and thus the subsequent enhanced desorption of DDT from the soils. The enhancing effects of oxalate and root exudates on DDT desorption were influenced by the contents of soil organic carbon and dissolved organic carbon in soils.  相似文献   

5.
The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis. Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5 mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.  相似文献   

6.

Remediation strategies using soil amendments should consider the time dependence of metal availability to identify amendments that can sustainably reduce available pollutant concentrations over time. Drying-wetting cycles were applied on amendments, soils and soil + amendment mixtures, to mimic ageing at field level and investigate its effect on extractable Cd, Cu, Ni, Pb and Zn concentrations from three contaminated soils. The amendments investigated were municipal waste organic compost and biochars. The amendments, soils and mixtures were characterised by their physicochemical properties at different ageing times. The amendments were also characterised in terms of sorption capacity for Cd and Cu. The sorption capacity and the physicochemical properties of the amendments remained constant over the period examined. When mixed with the soils, amendments, especially the compost, immediately reduced the extractable metals in the soils with low pH and acid neutralisation capacity, due to the increase in pH and buffering capacity of the mixtures. The amendments had a relatively minor impact on the metal availability concentrations for the soil with substantially high acid neutralisation capacity. The most important changes in extractable metal concentrations were observed at the beginning of the experiments, ageing having a minor effect on metal concentrations when compared with the initial effect of amendments.

  相似文献   

7.
Degraded land that is historically contaminated from different sources of industrial waste provides an opportunity for conversion to bioenergy fuel production and also to increase sequestration of carbon in soil through organic amendments. In pot experiments, As mobility was investigated in three different brownfield soils amended with green waste compost (GWC, 30% v/v) or biochar (BC, 20% v/v), planted with Miscanthus. Using GWC improved crop yield but had little effect on foliar As uptake, although the proportion of As transferred from roots to foliage differed considerably between the three soils. It also increased dissolved carbon concentrations in soil pore water that influenced Fe and As mobility. Effects of BC were less pronounced, but the impacts of both amendments on SOC, Fe, P and pH are likely to be critical in the context of As leaching to ground water. Growing Miscanthus had no measurable effect on As mobility.  相似文献   

8.
Qualitative analysis of volatile organic compounds on biochar   总被引:6,自引:0,他引:6  
Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs can directly inhibit/stimulate microbial and plant processes. Over 70 biochars encompassing a variety of parent feedstocks and manufacturing processes were evaluated and were observed to possess diverse sorbed VOC composition. There were over 140 individual chemical compounds thermally desorbed from some biochars, with hydrothermal carbonization (HTC) and fast pyrolysis biochars typically possessing the greatest number of sorbed volatiles. In contrast, gasification, thermal or chemical processed biochars, soil kiln mound, and open pit biochars possessed low to non-detectable levels of VOCs. Slow pyrolysis biochars were highly variable in terms of their sorbed VOC content. There were no clear feedstock dependencies to the sorbed VOC composition, suggesting a stronger linkage with biochar production conditions coupled to post-production handling and processing. Lower pyrolytic temperatures (?350 °C) produced biochars with sorbed VOCs consisting of short carbon chain aldehydes, furans and ketones; elevated temperature biochars (>350 °C) typically were dominated by sorbed aromatic compounds and longer carbon chain hydrocarbons. The presence of oxygen during pyrolysis also reduced sorbed VOCs. These compositional results suggest that sorbed VOCs are highly variable and that their chemical dissimilarity could play a role in the wide variety of plant and soil microbial responses to biochar soil amendment noted in the literature. This variability in VOC composition may argue for VOC characterization before land application to predict possible agroecosystem effects.  相似文献   

9.
Chinese brake fern (Pteris vittata L.), an arsenic (As) hyperaccumulator, has shown the potential to remediate As-contaminated soils. This study investigated the effects of soil amendments on the leachability of As from soils and As uptake by Chinese brake fern. The ferns were grown for 12 weeks in a chromated-copper-arsenate (CCA) contaminated soil or in As spiked contaminated (ASC) soil. Soils were treated with phosphate rock, municipal solid waste, or biosolid compost. Phosphate amendments significantly enhanced plant As uptake from the two tested soils with frond As concentrations increasing up to 265% relative to the control. After 12 weeks, plants grown in phosphate-amended soil removed >8% of soil As. Replacement of As by P from the soil binding sites was responsible for the enhanced mobility of As and subsequent increased plant uptake. Compost additions facilitated As uptake from the CCA soil, but decreased As uptake from the ASC soil. Elevated As uptake in the compost-treated CCA soil was related to the increase of soil water-soluble As and As(V) transformation into As(III). Reduced As uptake in the ASC soil may be attributed to As adsorption to the compost. Chinese brake fern took up As mainly from the iron-bound fraction in the CCA soil and from the water-soluble/exchangeable As in the ASC soil. Without ferns for As adsorption, compost and phosphate amendments increased As leaching from the CCA soil, but had decreased leaching with ferns when compared to the control. For the ASC soil, treatments reduced As leaching regardless of fern presence. This study suggest that growing Chinese brake fern in conjunction with phosphate amendments increases the effectiveness of remediating As-contaminated soils, by increasing As uptake and decreasing As leaching.  相似文献   

10.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

11.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

12.
Copper and zinc retention by an organically amended soil   总被引:3,自引:0,他引:3  
This paper describes changes in retention of Cu and Zn in laboratory experiments by a sandy soil that had been amended in the field with different composted wastes. The amounts of the metals retained increased as a result of the amendments, especially after two years. Desorption of the sorbed metals was always negligible, regardless of the treatment. The proportion of Cu retained was considerably higher than that of Zn, suggesting a higher affinity of the soil for the former. The greater sorption in the amended soils indicates a build-up of fresh sites for metal retention.The use of 'log(activity) vs. pH' plots showed that the nature of the surfaces retaining metals on the untreated and amended soils is different. At comparable pH values, the amended soils gave higher solution metal concentrations. Some of the possible environmental consequences of the use of these amendments for remediation purposes are discussed.  相似文献   

13.
The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg−1 and 362 mgCu kg−1) and Pb/Zn mine (4550 mgPb kg−1 and 908 mgZn kg−1) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element.  相似文献   

14.
The intensive use for over 100 years of copper sulfate (Bordeaux mixture) to fight against mildew in vineyard soils has led to an important, widespread accumulation of Cu (100 to 1500 mg Cu kg-1 soil). In Champagne vineyards, organic amendments are used currently to increase soil fertility and to limit soil erosion. Organic amendments may have a direct effect on the retention of Cu in the soil. To assess the influence of the organic management on the fate of Cu in calcareous Champagne vineyard soils, we studied Cu distribution (1) in the soil profile and (2) among primary soil particles, in vineyard parcels with different amendments. Amendments were oak-bark, vine-shoots and urban compost. The results were compared with the amount and the distribution of Cu in an unamended calcareous soil. Physical soil fractionations were carried out to separate soil primary particles according to their size and density. Cu has a heterogeneous distribution among soil particle fractions. Two fractions were mainly responsible for Cu retention in soils: the organic debris larger than 50 microns or coarse particulate organic matter (POM) issued from the organic amendments, and the clay-sized fraction < 2 microns. The POM contained up to 2000 mg Cu kg-1 fraction and the clay fraction contained up to 500 mg Cu kg-1 fraction. The clay-sized fraction was responsible for almost 40% of the total amount of Cu in the four parcels. POM was predominantly responsible for the differences in Cu contents between the unamended and the three amended parcels. Our results attested that methods of soil particle-size fractionation can be successfully used to assess the distribution of metal elements in soils.  相似文献   

15.
Pardo T  Clemente R  Bernal MP 《Chemosphere》2011,84(5):642-650
The use of organic wastes as amendments in heavy metal-polluted soils is an ecological integrated option for their recycling. The potential use of alperujo (solid olive-mill waste) compost and pig slurry in phytoremediation strategies has been studied, evaluating their short-term effects on soil health. An aerobic incubation experiment was carried out using an acid mine spoil based soil and a low OM soil from the mining area of La Unión (Murcia, Spain). Arsenic and heavy metal solubility in amended and non-amended soils, and microbial parameters were evaluated and related to a phytotoxicity test. The organic amendments provoked an enlargement of the microbial community (compost increased biomass-C from non detected values to 35 μg g−1 in the mine spoil soil, and doubled control values in the low OM soil) and an intensification of its activity (including a twofold increase in nitrification), and significantly enhanced seed germination (increased cress germination by 25% in the mine spoil soil). Organic amendments increased Zn and Pb EDTA-extractable concentrations, and raised As solubility due to the influence of factors such as pH changes, phosphate concentration, and the nature of the organic matter of the amendments. Compost, thanks to the greater persistence of its organic matter in soil, could be recommended for its use in (phyto)stabilisation strategies. However, pig slurry boosted inorganic N content and did not significantly enhance As extractability in soil, so its use could be specifically recommended in As polluted soils.  相似文献   

16.
Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of heavy metal contaminants from soil components. In this study, copper sorption-desorption isotherms were obtained for clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. Acidic pecan shell-derived activated carbon and basic broiler litter biochar were employed in desorption experiments designed to address both leaching by rainfall and toxicity characteristics. For desorption in synthetic rain water, broiler litter biochar amendment diminished sorption-desorption hysteresis. In acetate buffer (pH 4.9), significant copper leaching was observed, unless acidic activated carbon (pHpzc = 3.07) was present. Trends observed in soluble phosphorus and zinc concentrations for sorption and desorption equilibria suggested acid dissolution of particulate phases that can result in a concurrent release of copper and other sorbed elements. In contrast, sulfur and potassium became depleted as a result of supernatant replacements only when amended carbon (broiler litter biochar) or soil (San Joaquin) contained appreciable amounts. A positive correlation was observed between the equilibrium aluminum concentration and initial copper concentration in soils amended with acidic activated carbon but not basic biochar, suggesting the importance of cation exchange mechanism, while dissolution of aluminum oxides cannot be ruled out.  相似文献   

17.
The purpose of this study is to compare the relative contribution of different mechanisms to the enhanced adsorption of Cu(II), Pb(II) and Cd(II) by variable charge soils due to incorporation of biochars derived from crop straws. The biochars were prepared from the straws of canola and peanut using an oxygen-limited pyrolysis method at 350 °C. The effect of biochars on adsorption and desorption of Cu(II), Pb(II) and Cd(II) by and from three variable charge soils from southern China was investigated with batch experiments. Based on the desorption of pre-adsorbed heavy metals, the electrostatic and non-electrostatic adsorptions were separated. EDTA was used to replace the heavy metals complexed with biochars and to evaluate the complexing ability of the biochars with the metals. The incorporation of biochars increased the adsorption of Cu(II), Pb(II) and Cd(II) by the soil; peanut straw char induced a greater increase in the adsorption of the three metals. The increased percentage of Cd(II) adsorption induced by biochars was much greater than that for the adsorption of Cu(II) and Pb(II). Cu(II) adsorption on three variable charge soils was enhanced by the two biochars mainly through a non-electrostatic mechanism, while both electrostatic and non-electrostatic mechanisms contributed to the enhanced adsorption of Pb(II) and Cd(II) due to the biochars. Peanut straw char had a greater specific adsorption capacity than canola straw char and thus induced more non-electrostatic adsorption of Cu(II), Pb(II) and Cd(II) by the soils than did the canola straw char. The complexing ability of the biochars with Cu(II) and Pb(II) was much stronger than that with Cd(II) and thus induced more specific adsorption of Cu(II) and Pb(II) by the soils than that of Cd(II). Biochars increased heavy metal adsorption by the variable charge soils through electrostatic and non-electrostatic mechanisms, and the relative contribution of the two mechanisms varied with metals and biochars.  相似文献   

18.
The effects of mycorrhizal fungi and other soil microorganisms on growth of two grasses, Andropogon gerardii Vitm. and Festuca arundinacea Schreb., in heavy metal-contaminated soil and mine tailings were investigated. A. gerardii is highly dependent on mycorrhizal fungi in native prairie, while F. arundinacea is a facultative mycotroph and relies on mycorrhizal symbiosis only in extremely infertile soils. Regardless of microbial amendments, neither plant species was able to establish and grow in the mine tailings. Both plant species grew in the moderately contaminated or non-contaminated soils, although A. gerardii grew in these soils only when mycorrhizal. Other soil microbes significantly improved growth of A. gerardii only in uncontaminated soil, but to a lesser extent than mycorrhizae. Although F. arundinacea was more highly colonized by mycorrhizal fungi than A. gerardii, neither microbial amendment affected growth of fescue in any soil. In several treatments mycorrhizal fungi adapted to uncontaminated soil stimulated plant growth more than mycorrhizae adapted to the moderately contaminated soil. However, mycorrhizal fungi adapted to contaminated soil did not increase the productivity of plant growth in contaminated soil more than fungi adapted to uncontaminated soil. A. gerardii plants inoculated with mycorrhizal fungi retained more Zn in roots than in shoots, confirming earlier reports that mycorrhizal fungi alter the translocation pattern of heavy metals in host plants. In contrast, mycorrhizae did not affect translocation patterns in F. arundinaceae, suggesting that the mycorrhizal dependence of a plant species is correlated with the retention of metals in roots. The correlation between mycorrhizal dependence of a plant species and mycorrhizal alteration of translocation pattern may also explain the inconsistent reports of mycorrhizal effects on translocation of heavy metals in plants. Plant response to mycorrhizal symbiosis may therefore provide a useful criterion for the selection of the plant species to be used in revegetation of contaminated sites.  相似文献   

19.
Halim M  Conte P  Piccolo A 《Chemosphere》2003,52(1):265-275
Effective phytoremediation of soils contaminated by heavy metals depends on their availability to plant uptake that, in turn, may be influenced by either the existing soil humus or an exogenous humic matter. We amended an organic and a mineral soil with an exogenous humic acid (HA) in order to enhance the soil organic carbon (SOC) content by 1% and 2%. The treated soils were further enriched with heavy metals (Cu, Pb, Cd, Zn, Ni) to a concentration of 0, 10, 20, and 40 microg/g for each metal and allowed to age at room temperature for 1 and 2 months. After each period, they were extracted for readily soluble and exchangeable (2.5% acetic acid), plant-available (DTPA, Diethylentriaminepentaacetic acid), and occluded (1 N HNO(3)) metal species. Addition of HA generally reduced the extractability of the soluble and exchangeable forms of metals. This effect was directly related to the amount of added HA and increased with ageing time. Conversely, the potentially plant-available metals extracted with DTPA were generally larger with increasing additions of exogenous HA solutions. This was attributed to the formation of metal-humic complexes, which ensured a temporary bioavailability of metals and prevented their rapid transformation into insoluble species. Extractions with 1 N HNO(3) further indicated that the added metals were present in complexes with HA. The observed effects appeared to also depend on the amount of native SOC and its structural changes with ageing. The results suggest that soil amendments with exogenous humic matter may accelerate the phytoremediation of heavy metals from contaminated soil, while concomitantly prevent their environmental mobility.  相似文献   

20.
Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P?+?T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn?>?Cu?>?Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P?+?T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic-C-rich soil. More than 73 % P in the amendments remained in the upper 0–10 cm soil layers. However, leaching of P from soluble TSP was significant with 24.3 % of P migrated in the leachate in the organic-C-poor soil. The mobility of heavy metals in the P-treated soil varies with nature of P sources, heavy metals, and soils. Caution should be taken on the multi-metal stabilization since the P amendment may immobilize some metals while promoting others’ mobility. Also, attention should be paid to the high leaching of P from soluble P amendments since it may pose the risk of excessive P-induced eutrophication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号