首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhu L  Chen B  Wang J  Shen H 《Chemosphere》2004,56(11):99-1095
The concentrations of 10 polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured for five times (July and November 1999–2002) in four water bodies of Hangzhou, China. To investigate possible sources of PAH contamination, sediments, soils, runoff water and atmospheric particles of the region were also analyzed for their PAH contents. The maximum levels of PAHs in the water bodies (34.4–67.7 μg/l) were found in July, while significantly lower PAH concentrations (4.7–15.3 μg/l) were measured in November. The contamination is substantial and it may have resulted in acute toxic effects on aquatic organisms. The measured PAH concentrations in sediments and soils (224–4222 ng/g), runoff water (8.3 μg/l) and air particles (2.3 μg/m3) are discussed in relation to concentrations and patterns found in the surface water bodies. Comparison of PAH levels in sediments and soils led to the conclusion that the erosion of soil material does not contribute significantly to the contamination of sediments. The atmospheric PAH deposition to water bodies in the city area of Hangzhou was estimated to be 530 tons/a, while the contribution of surface runoff water was estimated to be 30.7 tons/a. The ratios of selected PAH were then used to illuminate the possible origin of PAHs in the examined samples (petrogenic, pyrogenic).  相似文献   

2.
Persistent organic pollutants (PAHs and PCBs) in soil samples from seven sites across the Seine basin were analysed. Samples were taken from industrialized, urban, suburban and remote sites. Results showed spatial differences, in terms of concentrations and congener profiles. PAH (Sigma14 PAHs) and PCB (Sigma 7 PCBs) concentrations ranged from 450 to 5650 microg kg(-1) and 0.09 to 150 microg kg(-1), respectively. A clear gradient from industrial to remote sites was highlighted, with a ratio of up to one order of magnitude for PAHs and two orders of magnitude for PCBs. Fluoranthene and pyrene were predominant, while the carcinogenic PAHs represented 15-46% of the total PAH content. Using hierarchical cluster analysis, soil samples profiles were compared and the influence of site location and potential sources were identified: automobile traffic, domestic heating, and industrial emissions were the prevalent PAHs sources in the Seine basin. PCB profiles suggested different transport patterns among congeners. For remote sites, the congener fingerprint showed a relatively higher proportion of the most volatile congeners, which were attributed to increased atmospheric residence times. Thus, PAH and PCB distributions in soils provided information on sources and evidence for short-range transport, and profiles of compounds reflected differences between regional and local emissions. This study demonstrates that soil sampling can be used to investigate spatial differences in atmospheric inputs of persistent organic pollutants based on differences in the mixtures of compounds, reflecting differences in regional and local atmospheric emissions.  相似文献   

3.
Sediment samples from three estuaries on the east coast of China were analyzed for persistent organic pollutants. Total PCB, PAH, and DDT concentrations in the sediments from Minjiang, Jiulongjiang, and Zhujiang estuaries ranged from 2 to 14 ng/g, 400 to 1500 ng/g, and 6 to 73 ng/g, respectively, in the sediments from these estuaries. The sources of PAH contamination were inferred from PAH compositions, with pyrogenic PAHs being the dominant source for Minjiang Estuary and petroleum related PAHs being the primary contributors to Jiulongjiang and Zhujiang estuaries. The high concentrations of DDT in the sediments from these estuaries were likely the result of widespread use of DDT in China in the 1960s and 1970s. Butyltin compounds were detected in the sediment from Jiulongjiang Estuary and Victoria Harbor, Hong Kong. Presence of butyltin compounds probably result from the shipping activities in these estuaries. Butyltin compounds were not detected in the sediments from Minjiang and Zhujiang estuaries. Contaminant concentrations were generally below levels expected to affect benthic organisms with the exception of DDTs.  相似文献   

4.
The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1,850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin.  相似文献   

5.
In 1999, the concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), the total PAH and polychlorinated biphenyls (PCBs) were measured in sea water, sediment and mussels collected along the coast of Izmit Bay, the most important bay of the Marmara Sea. The total-PAH concentrations, measured by Spectrofluorometry were in the range of 1.16-13.68 microg/l in sea water, in the range of 30.0 1670.0 microg/g dry weight in sediments and in the range from 5.67 to 14.81 microg/g wet weight in edible part of mussel. HPLC revealed Phenanthrene (three rings), chrysene (four rings) and benz[a]antracene (five rings) to be the dominant PAHs in sea water, while 16 different PAHs compounds were observed and measured in mussel samples. The most pollution occured at Dogu Kanali and Dil Deresi where were the main rivers containing wastes fall into the the Izmit Bay. Although the maximum mono-ortho PCB concentrations in sea water were measured in the Dil Deresi River (26.33 ng/l) and the Solventa? (22.19 ng/l) stations, maximum PCB concentrations in mussels were measured in the SEKA (28.11 microg/kg) and the Dil Deresi River (25.68 microg/kg). The dominant congeners of PCBs were from tetra to hexachlorobiphenyls. The toxicity equivalent values were very low in sea water and mussels.  相似文献   

6.
Bulk atmospheric deposition fluxes, air-water exchange fluxes, particle settling fluxes out of the upper water column, sediment trap fluxes in deep waters, and sediment burial fluxes of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in the Koster Fjord, eastern Skagerak, on the Swedish west coast. The aim of the study was to compare the magnitude and direction of the compound fluxes in the system in order to diagnose key fate processes. The PCB and PAH fluxes via net atmospheric deposition, settling particles out of the surface and through deep waters, as well as into the accreting underlying sediments were shown to be remarkably similar, agreeing within a factor of a few for any given target compound. Fluxes of all PCB and PAH target compounds remained fairly constant with water column depth. Thus there was no evidence for net desorption from sinking particles. The net unidirectional and near balancing of vertical fluxes suggests a net transport of PCBs and PAHs from the atmosphere to the continental shelf sediments in the Koster Fjord, which is consistent with the hypothesis that the shelf sediments are important sinks for these compounds.  相似文献   

7.
Hydrophobic organic contaminants (HOC) (i.e. PAHs and PCBs) were measured in the water column and in Eurytemora affinis samples from the Seine Estuary collected from November 2002 to February 2005. Results showed seasonal variations of both total PCB and PAH levels in the suspended particulate matter (SPM) and in the copepods with maximum levels during winter times. PAH and PCB concentrations in the SPM ranged from 499 to 5819ngg(-1) and from 58 to 463ngg(-1), respectively. Phenanthrene, pyrene and benzo[b+j+k]fluoranthene (B[b+j+k]F) were the predominant PAH compounds in the water column, while CB 101, 118, 153 and 138 were the most abundant PCB congeners. PCBs and PAHs bioaccumulated by E. affinis (EA) varied between 383 and 1785ngg(-1) and 165-3866ngg(-1). CB101, 153, 138 and B[b+j+k] were, respectively, the major compounds of PCB and PAH fingerprints in EA. Thereby, the copepods could reach high accumulation factor (ACF) (91000 for PCBs and 17000 for PAHs). The principal component analyses of contaminant concentrations and environmental parameter datasets distinguished two groups of copepods. The winter time cluster, with high percentage of adult copepods, which bioaccumulated the highest PCB and PAH body-burdens, and the second cluster with juveniles showing the lowest HOC concentrations. Thus, PAH and PCB concentrations in EA exhibited significant correlations with the percentage of adults making up the samples.  相似文献   

8.
The oligochaete, Lumbriculus variegatus, was used for a bioaccumulation assay in the creosote-contaminated sediment of Lake J?ms?nvesi in a 28-day experiment. The PAH concentrations of the whole body tissue of worms, sediments and water samples were determinated by GC-MS. Chemical analyses showed that benzo(k)fluoranthene, anthracene and fluorene were the main PAH compounds present in the tissue of oligochaetes, just as in the sediment. The biota-sediment accumulation factors (BSAFs) of the individual PAHs varied from 1.2 to 5.7. It is concluded that oligochaetes have a marked ability to accumulate and retain PAHs from creosote-contaminated sediment.  相似文献   

9.
Tonghui River, a typical river in Beijing, People's Republic of China, was studied for its water and sediment quality, by determining the levels of 16 polycyclic aromatic hydrocarbons (PAHs), 12 polychlorinated biphenyls (PCBs) and 18 organochlorine pesticides in water and sediment samples. Total PAHs, PCBs and organochlorine pesticides concentrations in water varied from 192.5 to 2651 ng/l, 31.58-344.9 ng/l and 134.9-3788 ng/l, respectively. The total PAHs, PCBs and organochlorine pesticides concentrations in surficial sediments were 127-928 ng/g, 0.78-8.47 ng/g and 1.79-13.98 ng/g dry weight, respectively. The results showed that the concentration of these selected organic pollutants in sediment was higher than those in surface water. It may be due to the fact that organic hydrophobic pollutants tend to stay in the sediments. The PAHs were dominated by 2-, 3-ring components in water samples and by 3- and 4-ring compounds in sediment. For organochlorines, alpha-HCH, delta-HCH, Heptachlor, Endosulfan II, DDT are the major organochlorine pesticides in water while Heptachlor, Dieldrin and DDE composed of 95% of total organochlorine pesticides in sediment. For HCHs (HCHs=alpha-HCH+beta-HCH+gamma-HCH+delta-HCH), the predominance of alpha-HCH of total HCHs were clearly observed in water and sediment. PCB18, PCB31 and PCB52 were predominant in water, on average these compounds collectively accounted for 67% of total PCBs. But in sediment, the predominant compounds were PCB28, PCB31 and PCB153, which accounted for 71% of total PCBs in sediment. The levels of micro pollutants in our study areas were compared with other studies.  相似文献   

10.
Martins M  Ferreira AM  Vale C 《Chemosphere》2008,71(8):1599-1606
Depth concentration profiles of PAHs, organic carbon and dissolved oxygen in non-colonised sediments and sediments colonised by Sarcocornia fruticosa from Mitrena salt marsh (Sado, Portugal) were determined in November 2004 and April 2005. Belowground biomass and PAH levels in below and aboveground material were also determined. In both periods, colonised sediments were oxygenated until 15-cm, rich in organic carbon (max 4.4%) and presented much higher PAH concentrations (max. 7.1 microg g(-1)) than non-colonised sediments (max. 0.55 microg g(-1)). Rooting sediments contained the highest PAH concentrations. The five- and six-ring compounds accounted to 50-75% of the total PAHs in colonised sediments, while only to 30% in non-colonised sediments. The elevated concentrations of PAHs in colonised sediments may be attributed to the transfer of dissolved PAH compounds towards the roots as plant uptake water and subsequent sequestration onto organically rich particles. A phase-partitioning mechanism probably explains the higher retention of the heavier PAHs. In addition oxygenated conditions of the rooting sediments favour the degradation of the lighter PAHs and explain the elevated proportion of the heavier compounds. Below and aboveground materials presented lower PAH concentrations (0.18-0.38 microg g(-1)) than colonised sediments. Only 3- and 4-PAHs were quantified in aboveground material, reflecting either preferential translocation of lighter compounds from roots or atmospheric deposition.  相似文献   

11.
Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were cooking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total.  相似文献   

12.
Due to concerns about adverse health effects associated with inhalation of atmospheric polycyclic aromatic hydrocarbons (PAHs), 30 ambient air samples were obtained at an air quality monitoring station in Palm Beach County, Florida, from March 2013 to March 2014. The ambient PAH concentration measurements and fractional emission rates of known sources were incorporated into a chemical mass balance model, CMB8.2, developed by EPA, to apportion contributions of three major PAH sources including preharvest sugarcane burning, mobile vehicles, and wildland fires. Strong association between the number of benzene rings and source contribution was found, and mobile vehicles were identified to be the prevailing source (contribution ≥56%) for the observed PAHs concentration with lower molecular weights (four or fewer benzene rings) throughout the year. Preharvest sugarcane burning was the primary contributing source for PAHs with relatively higher molecular weights (five or more benzene rings) during the sugarcane burning season (from October to May of the next year). Source contribution of wildland fires varied among PAH compounds but was consistently lower than for sugarcane burning during the sugarcane harvest season. Determining the major sources responsible for ground-level PAHs serves as a tool to improving management strategies for PAH emitting sources and a step toward better protection of the health of residents in terms of exposure to PAHs. The results obtain insight into temporal dominance of PAH polluting sources for those residential areas located near sugarcane burning facilities and have implications beyond Palm Beach County, in areas with high concerns of PAHs and their linked sources.

Implications: Source apportionment of atmospheric polycyclic hydrocarbons (PAHs) in Palm Beach County, Florida, meant to estimate contributions of major sources in PAH concentrations measured at Belle Glade City of Palm Beach County. Number of benzene rings was found to be the key parameter in determining the source with the prevailing contribution. Mobile vehicle sources showed a higher contribution for species with four or fewer benzene rings, whereas sugarcane burning contributed more for species with five or more benzene rings. Results from this study encourage more control for sugarcane burns and help to better manage authorization of the sugarcane burning incidents and more restrictive transportation plans to limit PAH emissions from mobile vehicles.  相似文献   

13.
Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) in cabbage (aerial part), air (gas and particles) and soil samples collected from two sites in Tianjin, China were measured. Although the levels of PAHs in all samples from the heavily contaminated site B were higher than those from the less contaminated site A, the PAH profiles were similar, suggesting the similarity in source type. PAH concentrations in cabbages were positively correlated to either gas or particle-bound PAHs in air. A multivariate linear regression with cabbage PAH as a function of both gas and particle-bound PAHs in air was established to quantitatively characterize the relationship between them. Inclusion of soil PAH concentrations would not improve the model, indicating that the contribution of soil PAHs to cabbage (aerial part) accumulation was insignificant.  相似文献   

14.
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43?±?0.4 and 316?±?1.4 μg/m3. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m3.  相似文献   

15.
Elevated PAH concentrations were detected in bank soils along the Mosel and Saar Rivers in Germany. Information on the identification of PAH sources in this area however remains unclear. This study was able to characterize the PAH sources by application of several approaches, including consideration of the distribution patterns of 45 PAHs (including 16 EPA PAHs and some alkyl PAHs), specific PAH ratios, distribution patterns of n-alkanes and principal component analysis (PCA). In addition, the efficiency of the tested approaches was assessed. The results from the application of the various source identification methods showed that pyrogenic PAHs dominate soil samples collected upstream of the confluence of the Mosel and Saar Rivers, and petrogenic and pyrogenic PAHs dominate samples downstream of the confluence. Based on the analysis of reference materials and organic petrography, the petrogenic input was found to be dominated by coal particles. More detailed information on the petrogenic sources was provided by the n-alkane analyses. The current study concludes that to accurately determine the origin of PAHs, several identification methods must be applied.  相似文献   

16.
Concentrations, spatial distribution and sources of 17 polycyclic aromatic hydrocarbons (PAHs) and methylnaphthalene were investigated in surface sediments of rivers and an estuary in Shanghai, China. Total PAH concentrations, excluding perylene, ranged from 107 to 1707 ng/g-dw. Sedimentary PAH concentrations of the Huangpu River were higher than those of the Yangtze Estuary. The concentration of the Suzhou River was close to the average concentration of the Huangpu River. PAHs source analysis suggested that, in the Yangtze Estuary, PAHs at locations far away from cities were mainly from petrogenic sources. At other locations, both petrogenic and pyrogenic inputs were significant. In the Huangpu and Suzhou Rivers, pyrogenic input outweighed other sources. The pyrogenic PAHs in the upper reaches of the Huangpu River were mainly from the incomplete combustion of grass, wood and coal, and those in the middle and lower reaches were from vehicle and vessel exhaust.  相似文献   

17.
Dyke PH  Foan C  Fiedler H 《Chemosphere》2003,50(4):469-480
This study focused on emissions of polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH) from incineration and power generation processes. Increased concern over human exposure to both classes of compounds has meant that environmental regulators need to assess the contribution made by emissions from regulated processes to human exposure. In the first part of an assessment in the UK we reviewed literature data on emissions of PCB, focusing on the dioxin-like PCB assigned toxic equivalency factors by the World Health Organization, and PAH. The literature study was supplemented by a series of plant tests to gather initial real plant data. Literature data were limited and the lack of standard protocols for measurement and reporting of both PCB and PAH meant that few data sets were comparable. Levels of dioxin-like PCB reported in the literature and measured in UK plant tests showed that well-controlled modem combustion plants with comprehensive pollution controls gave low emissions, typically about 5-10% of the toxic equivalent of the emissions of polychlorinated dibenzodioxins and dibenzofurans at the same plants and below the widely used standard of 0.1 ng TEQ/N m3.  相似文献   

18.
Snow cores were collected in the catchment area of five remote mountain lakes in Europe. They were analysed for polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and organochlorine pesticides, namely DDTs, hexachlorobenzene (HCB) and hexachlorocyclohexanes (HCH). PAH are found in higher amounts in the Tatra and Caledonian mountains, PCB are higher in the Alps and HCH are highest in the Alps and Pyrenees. The qualitative PAH distributions are dominated by low molecular weight compounds, phenanthrene being the most abundant PAH in all but in one site. These compounds also occur predominantly in the gas phase in the atmosphere. Their high abundance in the snowpack witness the occurrence of effective transfer mechanisms from gas to snow flakes. In Starolesnianske (Tatra mountains), a higher contribution of high molecular weight compounds is found. This site exhibits the highest snow PAH and suspended particulate levels. Transformation of the concentration values of these compounds into annual deposition rates and correction for catchment/lake area indicates that in Scandinavia and the Alps a large proportion of PAH incorporation is mediated by snowfallout whereas in the Tatra mountains snow deposition only accounts for a small fraction of the compounds stored in the lake sediments. Among organochlorine compounds, only PCB and HCH have been found above method detection limit in most of the samples. The PCB congener distributions changes significantly between sites, although a predominance of the less chlorinated congeners have generally been observed.  相似文献   

19.
We determined the concentrations of 35 PCNs, 12 PCBs, and 20 PAHs in 49 urban topsoils under different land use (house garden, roadside grassland, alluvial grassland, park areas, industrial sites, agricultural sites) and in nine rural topsoils. The sums of concentrations of 35 PCNs (sigma35 PCNs) were <0.1-15.4 microg kg(-1) in urban soils and <0.1 to 0.82 microg kg(-1) in rural soils. The PCN, PCB, and PAH concentrations were highest at industrial sites and in house gardens. While rural soils receive PCNs, PCBs, and PAHs by common atmospheric deposition, there are site-specific sources of PCNs, PCBs, and PAHs for urban soils such as deposition of contaminated technogenic materials. The PCN, PCB, and PAH concentrations decreased from the central urban to the rural area. In the same order the contribution of lower chlorinated PCNs and PCBs increased because they are more volatile and subject to increased atmospheric transport. The PCNs 52+60, and 73 were more abundant in soil samples than in Halowax mixtures, indicating that combustion contributed to the PCN contamination of the soils.  相似文献   

20.
Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in Spartina alterniflora plants grown in pots of contaminated sediment, plants grown in native sediment at a marsh contaminated with up to 900 microg/g total PAHs, and from plants grown in uncontaminated control sediment. The roots and leaves of the plants were separated, cleaned, and analyzed for PAHs. PAH compounds were detected at up to 43 microg/g dry weight in the root tissue of plants grown in pots of contaminated soil. PAH compounds were detected at up to 0.2 microg/g in the leaves of plants grown in pots of contaminated soil. Concentrations less than 0.004 microg/g were detected in the leaves of plants grown at a reference site. Root concentration factor (RCF) values ranged from 0.009 to 0.97 in the potted plants, and from 0.004 to 0.31 at the contaminated marsh site. Stem concentration factor (SCF) values ranged from 0.00004 to 0.03 in the potted plants and 0.0002 to 0.04 at the contaminated marsh. No correlation was found between the RCF value and PAH compound or chemical properties such as logKOW. SCF values were higher for the lighter PAHs in the potted plants, but not in the plants collected from the contaminated marsh. PAH concentrations in the roots of the potted plants are strongly correlated with soil concentrations, but there is less correlation for the roots grown in natural sediments. Additional plants were grown directly in PAH-contaminated water and analyzed for alkylated PAH homologs. No difference was found in leaf PAH concentrations between plants grown in contaminated water and control plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号