首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
三峡库区干流总磷浓度变化趋势分析研究   总被引:3,自引:0,他引:3  
通过分析2000年-2015年的三峡库区长江、嘉陵江、乌江干流总磷浓度数据,掌握三峡库区总磷总体水平,长江干流总磷浓度为0.135±0.043 mg/1,为Ⅲ类水质;嘉陵江总磷浓度较低,为0.075±0.033 mg/1,为Ⅱ类水质;乌江干流总磷浓度较高,约为0.403±0.288 mg/1,为V类水质.长江重庆段入境朱沱断面的总磷浓度在枯、丰水期呈显著上升趋势,出境培石断面的总磷浓度在枯、平水期呈显著上升趋势.乌江干流入境万木断面和入库锣鹰断面总磷浓度变化趋势一致,都表现为先升高后降低.从2009年开始升高,在2011年或2012年达到峰值,最大浓度超过1.0 mg/1,然后开始逐年下降,到2015年浓度下降到0.2 mg/l.  相似文献   

2.
利用汉江中下游干流河段例行监控断面2001-2011年水质监测资料中的高锰酸盐指数、氨氮和总磷3项水质指标,对汉江中下游干流水质状况、时空变化趋势进行分析和评价。研究结果表明:(1)汉江中下游干流水质总体状况良好,除罗汉闸断面总磷为Ⅲ类,其余断面各项水质指标均为Ⅱ类;(2)2001-2011年,沈湾、罗汉闸断面氨氮浓度显著下降趋势;余家湖断面高锰酸盐指数、氨氮和总磷浓度显著下降趋势;泽口断面高锰酸盐指数浓度显著下降趋势;(3)汉江干流河段高锰酸盐指数、氨氮和总磷等3项水质指标在白家湾断面以上相对较低,余家湖断面以下相对较高,中游河段水质优于下游。  相似文献   

3.
利用三峡库区长江干流1998年-2010年水质监测数据,以1998年-2003年代表蓄水前,2004年-2010年代表蓄水后,对比分析蓄水前后主要污染物浓度变化情况,用Spearman秩相关系数法判断其变化趋势的显著性。分析可知,蓄水后氨氮、化学需氧量、总磷指标的平均浓度要低于蓄水前,氨氮、化学需氧量浓度变化幅度大于蓄水前,总磷浓度变化幅度小于蓄水前;Spearman秩相关系数计算结果表明,三峡水库常年回水区内的断面,污染物浓度多数呈下降趋势,但只有晒网坝和培石断面的氨氮指标浓度下降趋势具有显著意义。  相似文献   

4.
郭朝臣  雷坤  李晓光  周波  吕旭波 《环境科学》2023,44(8):4279-4291
基于2017~2020年长江流域重要水系节点各污染物监测数据,在时空尺度下开展对长江流域干、支流水系通量变化规律的研究,从断面水量和水质及通量等方面分析其空间变化响应、年际变化趋势和通量相关性关系分析,揭示长江流域上游、中游和下游污染物通量时空贡献特征.结果表明,4年来长江流域主要污染物浓度整体呈下降趋势,总磷(TN)和氨氮(NH+4-N)浓度下降较为明显,干流总氮(TN)和总磷(TP)浓度均在空间分布上呈现自西向东逐渐增高趋势,上中下游高锰酸盐指数在2017~2020年分别下降18.5%、16.0%和14.0%,以上游下降幅度最高.径流量空间分布年均值从466亿m3显著增大到9923亿m3,支流河湖水系中两湖流域水量贡献最大,主要污染物中高锰酸盐指数、总磷(TP)和总氮(TN)通量年均呈现先增后减的趋势,岷沱江、嘉陵江和中游两湖地区污染物通量对入江贡献较大,不同区域水环境下通量存在差异性.相关性和层次聚类分析结果表明,高锰酸盐指数和总磷(TP)通量与水量呈极显著性相关,通量关系间生化需氧量(BOD5)与总氮(TN)、总磷(TP)和化学需氧量(COD)有显著相关性,主要污染物在汛期和非汛期差异性较强,在7~9月汛期反应强烈.研究结果可为长江流域水环境统筹管理与精准化防治等方面提供科学依据与理论支持.  相似文献   

5.
近40年来长江干流水质变化研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为掌握长江水质状况及其变化趋势,开展1981—2019年长江干流水质变化特征研究.系统总结了39年间长江干流地表水环境监测情况,以CODMn、NH3-N和TP为研究因子,探讨了长江干流水环境质量变化规律;同时,选取有连续监测结果的断面,分析了长江上游、中游和下游不同断面近40年来的水质变化特征.结果表明:①1981—2019年,我国水环境监测迅速发展,长江干流水环境质量监测在监测点位、监测频次、监测项目和水环境质量等方面都发生了较大变化.②长江干流地表水水质总体相对较好,上游水质好于中下游,上游水体中ρ(CODMn)、ρ(NH3-N)和ρ(TP)均低于中下游.③1981—2005年各江段ρ(CODMn)和ρ(NH3-N)年均值变化特征不同,在2006年之后大体呈逐渐降低的变化趋势.④2006年以来,长江干流水质呈好转态势,水体中ρ(CODMn)、ρ(NH3-N)和ρ(TP)均呈逐年下降趋势.⑤近年来,长江干流断面中TP的污染程度高于CODMn和NH3-N,应引起重视.研究显示,政府的相关管理措施对长江干流水质改善具有正面推动作用,极大改善了长江流域总体水质,也促进了长江干流水质的进一步好转.   相似文献   

6.
新水沙条件下长江中下游干流水体总磷时空变化分析   总被引:3,自引:0,他引:3  
卓海华  娄保锋  吴云丽  王瑞琳  陈杰  兰静 《环境科学》2020,41(12):5371-5380
长江干流三峡及上游水库群陆续建成运行后,中下游干流水体已形成新的水沙条件,其对水体磷含量的影响备受关注.为此,研究了新水沙条件下中下游干流总磷浓度的时空分布特征.结果表明:①三峡蓄水后,长江中下游干流水体TCP(澄清30min样品)浓度基本在0.10~0.15 mg·L-1之间变动,在时间尺度上总体呈先上升后降低趋势,在空间尺度上沿程呈现升高趋势;水体中溶解态总磷(TDP)浓度随时间推移缓慢升高.②水体中可沉降固体对不同江段水体中磷含量存在不同程度影响,南津关、汉口和吴淞口下23 km这3个断面TCP/TP比值中位值分别为0.900、0.720和0.609,从上游到下游依次降低;水体中溶解态总磷(TDP)占总磷(TP)比例沿程呈下降趋势,而颗粒磷(TPP)占总磷(TP)比例沿程呈上升趋势,南津关、汉口、吴淞口下23 km等3个断面TPP/TP比值中位值分别为0.439、0.567和0.738.③按照《地表水环境质量标准》(GB 3838-2002)要求,以TCP浓度进行水质评价,评价结果显示长江中下游干流水质总体良好.但若考虑水体中可沉降固体影响,以水体总磷(TP)浓度进行评价,会得出相对较差的结果,尤其是在靠近河口段.④长江中下游干流主河道靠上游河段不同监测断面内部各测线、测点磷浓度差异较小,河口附近则差异明显.⑤长江中下游干流城市江段近岸水域水体中TCP浓度明显高于相应河段主河道常规监测结果,局部河段存在明显岸边污染带.  相似文献   

7.
三峡库区巴东段水质状况及其变化趋势研究   总被引:3,自引:1,他引:3  
根据对2002年和2004年长江三峡库区巴东段的七个监测断面的水质监测结果,采用综合污染指数法(P值法)对各监测断面、城区江段以及其总体水环境质量进行了综合评价。结果表明,巴东段2002年水质状况属于中度污染,2004年水质状况属于轻度污染,主要污染区域为长江干流巴东段和神农溪;主要污染物是粪大肠菌群、氨氮、总氮、总磷和石油类。  相似文献   

8.
基于长江干流宜宾、寸滩、宜昌、汉口、大通和上海(古洞口) 6个断面2005—2016年的高锰酸盐指数、五日生化需氧量、氨氮和总磷4项指标的监测数据,采用主成分分析法提取所有主成分,计算得到包含所有水质指标信息的综合得分值,再通过spearman秩相关系数法分析主成分综合得分值的变化趋势。结果表明:长江干流上游水质优于中下游,上游水质呈变好的趋势,中下游水质表现出不断恶化的趋势。  相似文献   

9.
基于长江干流宜宾、宜昌、汉口、大通和上海(石洞口)5个断面2004—2016年NH_3-N和TP浓度监测数据,采用spearman秩相关系数法探究长江干流氮、磷浓度的年际变化趋势和年内变化规律。结果表明:研究期间长江干流上游的NH_3-N浓度低于中下游,可达到GB 3838—2003《地面水环境质量标准》Ⅰ类水质标准,TP浓度在全河段浓度均较高,达到Ⅲ类水质标准;NH_3-N浓度在此期间具有显著下降趋势,而TP浓度呈显著上升趋势;上游NH_3-N浓度并不随流量变化,TP浓度与流量的年内分布呈正相关,中下游的NH_3-N和TP浓度与流量的年内分布均呈负相关。  相似文献   

10.
对汉江干流水质现状进行了分析评价并探讨了主要监测指标的变化趋势。指出汉江水质以 、 类为主,总体较好,襄樊白家湾以上河段的水质明显好于下游河段,水质相对较差的断面主要是城镇控制断面。汉江主要污染物是总磷。水质在不同水期的变化为:平水期好于丰水期,丰水期好于枯水期。16年间,高锰酸盐指数和氨氮分别有37.5%和25%的断面年均值呈上升趋势。  相似文献   

11.
为探究武南区域重点河流水质的变化规律、驱动因素以及河流治理成效,基于2006~2018年连续水质监测数据,综合分析了4条重点河流(太滆运河、武宜运河、武进港和永安河)水质演变趋势,并对污染较重的永安河各项水质指标进行了季节性分析和相关性分析.结果表明:2006~2018年,4条河流水质整体呈好转趋势,修正内梅罗指数分别下降36.2%,31.5%,56.4%,48.7%,受河流清淤工程影响,永安河2017年水质有所下降;4条河流氨氮浓度、总氮浓度与高锰酸盐指数下降趋势明显(P<0.05),总磷浓度则存在一定波动;永安河的总氮、氨氮和高锰酸盐指数间或存在同源关系,氨氮和总氮季节性变化明显,雨季浓度低于旱季,总磷和高锰酸盐指数没有明显季节性变化趋势;城镇化发展与产业结构由传统工业、农业向第三产业的转变均对区域水环境改善有积极作用.  相似文献   

12.
磷是水域重要的营养或污染物质之一,主要随河川径流循环,河流大型水库建设和运行将对磷的输运和转化产生重要影响.基于三峡水库2008~2016年实测水文和水质资料,建立了总磷(TP)通量和泥沙通量的统计模型,利用模型插补TP的日过程浓度后建立了TP通量计算公式,分析了三峡水库TP浓度时空变化特征、通量变化及滞留效应.结果表明,不考虑区间小支流TP入汇影响, 2008~2012年,三峡入库TP浓度年际变化为0.196~0.290mg·L~(-1),年内TP浓度变化趋势呈"M"型,具有明显的双峰特性,三峡干流上游至下游TP浓度基本表现为沿程减小,部分年份清溪场断面TP浓度高于寸滩,该时段三峡年均入库TP通量和滞留率分别为8.23万t和49.76%. 2013~2016年,三峡年均入库TP通量和滞留率明显减小,分别为4.79万t和12.03%.  相似文献   

13.
丹江口水库典型入库支流氮磷动态特征研究   总被引:19,自引:7,他引:12  
雷沛  张洪  单保庆 《环境科学》2012,33(9):3038-3045
重污染的神定河(接收城市污染)、中污染的大柏河(接收城镇污染)以及轻污染的五龙池(接收轻微农业面源污染)是丹江口水库3条典型入库支流.在2010年4月~2011年4月对这3条入库支流及其河口水质监测的基础上,分析了水中氮、磷的动态变化特征,并利用综合营养状态指数法对其营养状态进行评价.结果表明,神定河的TN、TP全年浓度均值分别为11.63 mg.L-1、0.93 mg.L-1,与五龙池(TN为4.41 mg.L-1,TP为0.076 mg.L-1)相比分别超过3倍和12倍;大柏河的TN、TP全年浓度均值分别为4.79 mg.L-1、0.15 mg.L-1,略高于五龙池中TN、TP浓度均值.3条支流及其河口中营养盐的时间差异为TN浓度在丰水期低于枯水期,而多数支流中TP浓度在枯水期低于丰水期.神定河中NH4+-N占TN的质量分数高达69%,其它支流及河口中NH4+-N占TN的质量分数均低于20%.NO3--N浓度变化范围为1.3~2.7 mg.L-1,SRP占TP的质量分数为30%~45%.神定河及其河口氮、磷营养元素比例关系研究表明神定河总体处于氮限制状态,河口总体处于磷限制状态.综合营养状态指数评价显示3条典型污染入库支流及其河口都处于富营养化状态,轻污染的五龙池的入库河口(东库湾)处于轻度富营养化状态.  相似文献   

14.
为了研究三峡水库蓄水及汉丰湖调节坝运行对湖库氮磷营养盐的影响,于2018年11月~2019年10月对汉丰湖和高阳湖进行逐月水样采集.结果表明:汉丰湖TN浓度为0.78~2.38㎎/L,TP浓度为0.03~0.13㎎/L;高阳湖TN浓度为0.57~2.48㎎/L,TP浓度为0.03~0.09㎎/L,两湖库全年易发生富营养化.汉丰湖和高阳湖水体氮素浓度变化趋势一致,水体氮污染主要来自径流污染、城市污水以及淹没土壤的释放;两湖库磷素时空差异显著,高阳湖水体磷浓度随水位的变化波动性显著,说明水位调节对磷循环产生更直接的影响.外源污染的输入、浮游植物生长以及气温变化是影响汉丰湖水体氮磷营养盐浓度的主要因素,而高阳湖水体氮磷浓度主要受水位波动的影响.  相似文献   

15.
为识别西洞庭湖长江三口分流来水与洞庭湖水系河流来水磷元素的污染特征,于2016年1-12月在西洞庭湖的主要入湖河流松滋河(三口分流河道)、沅江和澧水(洞庭湖水系河流)开展了水文水质同步调查,研究了入湖河流中磷浓度和组成的时空分布特征,剖析了水文因素对磷污染特征的影响,探究了磷的来源结构.结果表明,3条主要入湖河流流量平均值表现为沅江(1 718 m3/s)>松滋河(935 m3/s)>澧水(884 m3/s),ρ(TP)平均值表现为沅江(0.070 mg/L) < 澧水(0.077 mg/L) < 松滋河(0.138 mg/L);沅江的年均入湖磷通量(4 177.26 t/a)对于西洞庭湖磷污染而言仍起主导作用;沅江、澧水与松滋河的磷的形态以DTP(溶解态磷,占比为78.56%~90.19%)为主,并且松滋河DTP占比(90.19%)显著高于沅江和澧水(78.56%~83.34%).进一步的分析显示,3条河流的磷污染状况受水文因素影响显著,沅江和澧水磷浓度表现为汛期高于非汛期,磷的主要来源为非点源;松滋河的磷浓度表现为非汛期高于汛期,汛期主要取决于长江来水状况,非汛期主要取决于松滋口以下区间的点源污染状况.研究显示,3条河流磷浓度和形态均具有时空差异性,并且年内变化规律差异较大.   相似文献   

16.
巢湖西部河口区沉积物氮磷分布特征与原位扩散通量估算   总被引:1,自引:0,他引:1  
选取巢湖西部重污染入湖河口区,研究表层沉积物氮磷污染特征,并运用Fick定律估算沉积物-水界面氮磷原位扩散通量.结果表明:南淝河、派河、十五里河河口表层沉积物总氮平均含量达到2208.17 mg·kg~(-1),氮形态以有机氮为主,占比达到90%以上.表层沉积物总磷平均含量为704.59 mg·kg~(-1),其中铁铝结合磷、活性有机磷和钙镁结合磷分别占比27%、28%和18%.河口区水体氨氮浓度从上覆水到孔隙水中总体呈上升趋势,沉积物表层(0~5 cm)孔隙水中氨氮平均浓度为25.42 mg·L~(-1),是上覆水中的7倍.沉积物孔隙水中硝氮与正磷酸盐浓度在垂向上随深度的增加呈先上升后降低的趋势,在沉积物-水界面附近达到浓度最高值.3个河口沉积物孔隙水中氮磷营养盐均向上覆水扩散,其中氨氮扩散通量分别为25.87、74.85与18.08 mg·m~(-2)·d~(-1).硝氮与正磷酸盐扩散通量较低,范围分别在1.38~2.78和0.011~0.024 mg·m~(-2)·d~(-1)之间.总体上看,巢湖西部河流入湖河口区表层沉积物氮污染严重,且存在较高的氮磷营养盐释放风险,应是巢湖富营养化控制过程中重点关注的区域.  相似文献   

17.
为揭示白洋淀夏季入淀区上覆水-间隙水氮磷营养盐相互作用,本研究于2019年7月对白洋淀主要6条入淀河流取样,通过分析上覆水、间隙水水质特征以及营养盐在沉积物-水界面的扩散通量,评估了营养盐扩散对沉积物与上覆水的影响.结果表明白洋淀水质呈弱碱性;溶解氧(DO)含量较低,为沉积物内源污染物的释放提供了厌氧环境;氨氮(NH4+-N)浓度在0.35~1.76mg·L-1,作为主要给水来源的潴龙河淀区最高;硝氮(NO3--N)浓度在0.75~1.97mg·L-1;溶解性总氮(TDN)浓度在0.99~2.70mg·L-1,位于自然区的S2瀑河含量最高;溶解性总磷(TDP)浓度在0.03~0.15mg·L-1,靠近居民区的白沟引河含量最高.间隙水氨氮浓度在5.24~10.64mg·L-1,是上覆水体的10倍,内源污染严重;硝氮浓度在0.36~0.79mg·L-1;溶解性总氮浓度在5.36~12.02mg·L-1,是上覆水体的5倍;溶解性总磷浓度在0.03~0.3mg·L-1.应用综合污染指数法对水质进行评价发现间隙水污染程度远高于上覆水,各采样点呈现出严重污染状态.对NH4+-N、TDN和TDP进行交换通量分析显示,NH4+-N的扩散通量在1.71~7.43mg·(m2·d)-1,作为保定市纳污河流的府河采样点内源氨氮向上覆水扩散速率最快;TDN的扩散通量除白沟引河较低,其余5个采样点均值达到9.11mg·(m2·d)-1,夏季水体中溶解氧含量较低且沉积物-水界面TDN浓度差较大,导致沉积物中含氮营养盐在厌氧条件下大量释放到上覆水中,对水质造成严重污染;萍河采样点TDP的扩散通量是负值表示上覆水体的磷污染物向沉积物聚集的状态,剩余5个采样点的扩散通量范围在0.03~0.16mg·(m2·d)-1,表现出磷营养盐向上覆水释放的状态.扩散通量显示内源污染物是上覆水污染物的重要来源,为有效治理入淀区水质,沉积物氮磷营养盐的清淤处理迫在眉睫.  相似文献   

18.
三峡水库是我国重要战略水资源库.三峡水库蓄水后,库区富营养化问题日益凸显,TN、TP成为影响库区水质的主要污染因子,其中80%~85%入库氮、磷污染负荷来自流域上游.受长江富含营养物质水质输入和流域内人类活动面源输入等共同影响,长江中下游超过80%的湖泊发生富营养化,长江口及其毗邻海域赤潮频发.因此,三峡库区及上游流域仅实施国家统一的COD和氨氮水污染物目标总量控制已不能满足流域水环境安全要求.为保障三峡水库、长江中下游湖泊和东海海域环境安全,支撑长江经济带可持续发展,应按照湖泊保护的要求,进一步深化三峡库区及上游流域氮、磷污染控制与治理.新安江是我国第一个跨省流域水质补偿试点,2010-2013年,为加强新安江水污染防治,提高流域生态环境保护水平,中央财政、浙江、安徽两省共拨付资金12.7×108元,试点工作启动后,新安江跨界断面连续3 a水质均符合补偿协议要求,ρ(CODMn)、ρ(氨氮)和ρ(TP)均下降,水质恶化趋势得到有效控制.借鉴新安江流域水质补偿试点实施的成功经验,就"十三五"期间继续深化三峡库区及上游流域水污染防治问题,提出以下建议:①国家、下游和上游省(市)政府三方共同出资,建立长江流域水质补偿专项资金;②科学制订三峡水库水污染防治规划,强化三峡库区及上游流域氮、磷污染负荷控制;③建立并实施长江流域跨行政区水环境质量考核制度.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号