首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Travel on unpaved public roads is the single largest anthropogenic source of emissions of airborne particles in the U.S. The average impact of this source on average annual mean total suspended particulate (TSP) concentrations varies from 0.05 μg/m3 (Alaska) to 11 μg/m3 (Pennsylvania). When compared by contributions to the variance in state to state TSP levels, their impact is as great as the impact of emissions from all conventional sources. Common emission control methods include paving, oiling, speed reduction, watering, and application of calcium chloride. Total annual emissions are, in most cases, most economically reduced by either speed control or paving, with expected average control costs of less than $0.50/lb of emissions reductions. For most roads with average daily traffic flows above 100 vehicles per day, paving is shown to control emissions at average costs of less than $0.05/lb. In some situations, the costs of paving are more than offset by reductions in maintenance costs. Thus it would appear that, even accounting for the order of magnitude lower impact on statewide average concentration per ton of particles emitted from open sources, control of dust emissions from unpaved roads offers an economical means for reducing ambient TSP levels.  相似文献   

2.
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

3.
A companion paper showed that the annual (1976) emissions of particles from open sources, those sources too great in extent to control through enclosure or ducting, in the U.S. were over 500 × 106 tons. Here it is demonstrated that on the average, a single open source class (unpaved roads) contributes 1.2 times as much to the variability of statewide-averaged measured annual mean TSP levels as all conventional sources. The nine other major open source classes do not appear to contribute significantly to measured TSP levels, due to patterns of source and monitor location. Although, on the average, the total contributions of unpaved roads to TSP are larger than conventional source contributions, the per ton contributions are only approximately one-ninth as great. Both precipitation frequency and adjacent states’ TSP levels are found to be stronger determinants of the between-state variability in TSP levels than conventional open source emissions. Several states, including NM, IL, AL, NJ, PA, CA, ID, ND, Rl, DE, CT, and WV (depending upon criterion of importance) are identified for further research on the feasibility, practicality, importance, and cost-effectiveness of control of emissions of dust from unpaved roads.  相似文献   

4.
A study to investigate the dynamical characteristics of particle matter emissions in a working open yard is conducted in Caofeidian Port of Hebei Province, China. The average diurnal concentrations of the total suspended particulate (TSP) matter and respirable particulate matter (PM10 and PM5) are monitored during the field measurement campaign. Sampling is performed at a regular interval at 8 monitoring stations in the yard with normal industrial activities. The average TSP, PM10 and PM5 concentrations range from 285 to 568, 198 to 423 and 189 to 330 μg.m-3 in the yard, respectively. The linear regression correlation coefficient of TSP/PM10 and TSP/PM5 is 0.95±0.01 and 0.88±0.02, respectively.By using the Spearman correlation method, the wind speed and relative humidity are both weakly correlated with the PM10 and PM5 concentrations according to the measurements. In addition, industrial operation activities, such as vehicular traffic in the yard and the loading time of stackers, are significantly positively correlated with the PM concentration. Using the multivariate regression method, the main parameters influencing the TSP concentration variations are integratedly analysed. The traffic volume is found to be a significant predictor of TSP concentration variation, with the smallest P value (P<0.05).To understand the dynamical characteristics of particle emissions in the yard, the emissions from the truck transports, that is, from unpaved haul roads and from the loading process, are established. Then, the dynamical emission factor (EFD) based on the industrial activities in the yard is proposed. The dynamical emissions average 5.25x105 kg.year-1 and EFD is evaluated to be 0.29 kg.(ton.day)-1 during the measurement period. These outcomes have meaningful implications not only for understanding the dynamical characteristics of particle emissions in the working stockyard but also for implementing effective control measures at appropriate sites in the harbour area.  相似文献   

5.
Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM10 and PM2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions.

Implications: Development of region-specific emission estimation techniques for PM10 and PM2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Comprehensive air quality monitoring was undertaken, and corresponding recommendations were provided.  相似文献   


6.
In this work, stationary and mobile point source tracer release techniques have been used to determine PM10 emission rates from four-lane commercial/residential paved roads under sanded and unsanded conditions, and from unpaved roads relative to site-specific vehicular and ambient parameters. Measured street (4 + lanes; ? 10,000 vehicles per day) emission factors for unsanded and sanded roads were 40 and 20% lower, respectively, than the EPA approved reference value. The sanded road emission factor was approximately 40% higher than that for the unsanded road. These results indicate a consistent relationship between PM10 and relative humidity under unsanded conditions. There is some evidence to suggest that street sweeping has a measurable effect on PM,, emission reduction during periods of low relative humidity (i.e. ? 30%). Within the constraints imposed by the variable experimental conditions, the emission factors determined for unpaved roads agreed reasonably well with the unpaved road empirical formula. Limited correlations were observed with ambient meteorological parameters. The capability of the “upwind-dowiawind” concentration modeling method to predict accurate emission was tested using a Gaussian dispersion model (SIMFLUX). Predictions agreed well with the experimentally determined emission factors.  相似文献   

7.
Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 microns, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM2.5, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.  相似文献   

8.
Open sources are those stationary sources of air pollution too great in extent to be controlled through enclosure or ducting. Open sources of atmospheric particles include: wind erosion, tilling, and prescribed burning of agricultural cropland; surface mining and wind erosion of tailings piles; vehicular travel on both paved and unpaved roads; construction site activity; and forest fires. It is estimated that in 1976 the total open source emissions of particles in the U.S. amounted to over 580 × 106 ton. These estimates indicate that emissions from the two largest open source classes, travel on unpaved roads and agricultural wind erosion, accounted for 86% of this total. The open source emissions in ten states (AZ, CA, KS, MN, MT, NM, ND, OH, SD, TX) contributed 6 2% of the national emissions for 1976.  相似文献   

9.
The emissions from burning the residue following grass-seed harvest were determined by means of a combined laboratory-field study. Samples of the straw and stubble residue were burned in the laboratory burning tower at the University of California at Riverside. Complete analyses were determined for gaseous and particulate emissions for the important grass species from the Willamette Valley of Oregon. Particulate emissions averaged 15.6 lb/ton of fuel burned. Carbon monoxide averaged 101 lb/ton of fuel burned. Hydrocarbon emission averages, in pounds per ton of fuel burned, were 1.74 for saturates plus acetylene, 2.80 for defines, and 1.68 for ethylene. The NOx emission, at the temperature peak during the burn, averaged 29.3 ppm. Field studies, conducted by personnel from Oregon State University, measured only particulate emissions, carbon dioxide, and temperature over the burn. The carbon dioxide values were found to be similar to those obtained on the burning table at UCR and it was therefore concluded that the other gaseous emissions were similar and could be used as reasonably accurate for emission inventories. The temperature values obtained in the laboratory and field were also similar and further justifies extrapolating the burning table data to field situations. The particulate matter collected in the field studies averaged 15.55 lb of particulate per ton of fuel burned. This is the same average obtained for the burning table data which again serves to validate the emissions reported from Riverside. Much more variability was found in the particulate emissions obtained in the field which reflects the wider range of environmental conditions encountered in the field.  相似文献   

10.
ABSTRACT

This paper reports the first empirical estimate of particle emissions from unpaved shoulders along paved roads.1 Its objectives are to develop and demonstrate an emission rate measurement methodology that can be applied in different areas; identify the mechanisms that suspend dust from unpaved shoulders and the observables related to this suspension process; and quantify PM10 mass emissions in the form of an emission rate. To achieve these objectives, fast-response observations from nephelometers and a sonic anemometer were used to characterize shortlived dust plumes generated by passing vehicles. In addition, detailed soil surface measurements determined the mechanical properties of the shoulder surfaces.

Large traffic-induced turbulence events that led to significant dust entrainment were almost exclusively caused by “large” vehicles such as trucks, semis, and vehicles pulling trailers, all traveling 50-65 mph. PM10 emission rates for these large, fast-traveling vehicles were determined to be 8 ± 4 grams per vehicle kilometer traveled under dry conditions. Emissions due to smaller vehicles such as cars, vans, and sport utility vehicles were negligible for normal on-road driving. These results indicate that the majority of PM10 emissions from unpaved shoulders is caused by relatively few vehicles.  相似文献   

11.
There is a dearth of information on dust emissions from sources that are unique to the U.S. Department of Defense testing and training activities. However, accurate emissions factors are needed for these sources so that military installations can prepare accurate particulate matter (PM) emission inventories. One such source, coarse and fine PM (PM10 and PM2.5) emissions from artillery backblast testing on improved gun positions, was characterized at the Yuma Proving Ground near Yuma, AZ, in October 2005. Fugitive emissions are created by the shockwave from artillery pieces, which ejects dust from the surface on which the artillery is resting. Other contributions of PM can be attributed to the combustion of the propellants. For a 155-mm howitzer firing a range of propellant charges or zones, amounts of emitted PM10 ranged from -19 g of PM10 per firing event for a zone 1 charge to 92 g of PM10 per firing event for a zone 5. The corresponding rates for PM2.5 were approximately 9 g of PM2.5 and 49 g of PM2.5 per firing. The average measured emission rates for PM1o and PM2.5 appear to scale with the zone charge value. The measurements show that the estimated annual contributions of PM10 (52.2 t) and PM2.5 (28.5 t) from artillery backblast are insignificant in the context of the 2002 U.S. Environment Protection Agency (EPA) PM emission inventory. Using national-level activity data for artillery fire, the most conservative estimate is that backblast would contribute the equivalent of 5 x 10(-4) % and 1.6 x 10(-3)% of the annual total PM10 and PM2.5 fugitive dust contributions, respectively, based on 2002 EPA inventory data.  相似文献   

12.
The U.S. Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source through the air pathway to human exposure in significant exposure microenvironments. Current particulate matter (PM) emission models, particle emission factor model (used in the United States, except California) and motor vehicle emission factor model (used in California only), are suitable only for county-scale modeling and emission inventories. There is a need to develop a site-specific real-time emission factor model for PM emissions to support human exposure studies near roadways. A microscale emission factor model for predicting site-specific real-time motor vehicle PM (MicroFacPM) emissions for total suspended PM, PM less than 10 microm aerodynamic diameter, and PM less than 2.5 microm aerodynamic diameter has been developed. The algorithm used to calculate emission factors in MicroFacPM is disaggregated, and emission factors are calculated from a real-time fleet, rather than from a fleet-wide average estimated by a vehicle-miles-traveled weighting of the emission factors for different vehicle classes. MicroFacPM requires input information necessary to characterize the site-specific real-time fleet being modeled. Other variables required include average vehicle speed, time and day of the year, ambient temperature, and relative humidity.  相似文献   

13.
Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

14.
Past efforts to estimate methane emissions from underground mines, surface mines, and other coal mine operations have been hampered, to different degrees, by a lack of direct emissions data. Direct measurements have been completely unavailable for several important coal mining operations. A primary goal of this study was to collect new methane emissions measurements and other data for the most poorly characterized mining operations and use these data to develop an improved methane emission inventory for the U.S. coal mining industry. This required the development and verification of measurement methods for surface mines, coal handling operations, and abandoned underground mines and the use of these methods at about 30 mining sites across the United States. Although the study's focus was on surface mines, abandoned underground mines, and coal handling operations, evaluations were also conducted to improve our understanding of underground mine emission trends and to develop improved national data sets of coal properties. Total U.S. methane emissions are estimated to be 4.669 million tons, and as expected, emissions from underground mine ventilation and methane drainage systems dominate (74% of the total emissions). On the other hand, emissions from coal handling, abandoned underground mines, and surface mines are significant, and collectively they represent approximately 26% of the total emissions.  相似文献   

15.
A fuel-based assessment of off-road diesel engine emissions   总被引:1,自引:0,他引:1  
The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed. Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 x 10(9) kg NOx and 1.2 x 10(8) kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including agriculture, construction, logging, and mining equipment, but not locomotives or marine vessels) was responsible for 10% of mobile source NOx emissions nationally, whereas on-road diesel vehicles contributed 33%.  相似文献   

16.
Abstract

Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (<100 µm) concentrations at the boundary of gravel sites ranged from 280 to 1290 µg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 µg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 µg/m3, were also above the daily air quality standard of 125 µg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 µg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 µm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

17.
Fugitive dust emission from limestone extraction areas is a significant pollution source. The cracking operation in limestone extraction areas easily causes high total suspended particulate (TSP) concentrations in the atmosphere, occasionally exceeding the 1-hr national emission standard of Taiwan (500 microg/m3). The concentration and size distribution were measured at different distances (0.05-15 km) in the extraction areas. The highest hourly concentrations of TSP, PM10 (suspended particulate matter [PM] smaller than 10 microm), and PM2.5 (suspended PM smaller than 2.5 microm) are 1111, 825, and 236 microg/m3, respectively, during the cracking process. Measurement results obtained from the Micro-Orifice Uniform Deposit Impactor indicated that the mass median aerodynamic diameter is approximately 0.7 microm, with the geometric standard deviation exceeding 7. In addition, the emission factors are 0.143 and 0.211 kg/t for both vertical well and stair extraction operations, respectively. Experimental results demonstrate that the corresponding TSP control efficiencies for spraying water, planting grass, setting short walls, paving gravel roads, and establishing vertical well transportation are approximately 55, 50, 44, 22, and 30%, respectively. Furthermore, the PM10 control efficiencies are approximately 45, 41, 54, 35, and 30%, respectively, whereas the PM2.5 control efficiencies are roughly 23, 31, 15, 11, and 10%, individually.  相似文献   

18.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

19.
ABSTRACT

Past efforts to estimate methane emissions from underground mines, surface mines, and other coal mine operations have been hampered, to different degrees, by a lack of direct emissions data. Direct measurements have been completely unavailable for several important coal mining operations. A primary goal of this study was to collect new methane emissions measurements and other data for the most poorly characterized mining operations and use these data to develop an improved methane emission inventory for the U.S. coal mining industry. This required the development and verification of measurement methods for surface mines, coal handling operations, and abandoned underground mines and the use of these methods at about 30 mining sites across the United States. Although the study's focus was on surface mines, abandoned underground mines, and coal handling operations, evaluations were also conducted to improve our understanding of underground mine emission trends and to develop improved national data sets of coal properties. Total U.S.  相似文献   

20.
The Coordinating Research Council (CRC) held its eleventh workshop in March 2001, focusing on results from the most recent real-world vehicle emissions research. We summarize the presentations from researchers engaged in improving our understanding of the contribution of mobile sources to ambient air quality and emission inventories. Participants in the workshop discussed efforts to improve mobile source emission models and emission inventories, the role of on-board diagnostic (OBD) systems in inspection and maintenance (I/M) programs, particulate matter (PM) emissions, contributions of diesel vehicles to the emission inventory, on-road emissions measurements, fuel effects, unregulated emissions, and microscale and modal emission models, as well as topics for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号