首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant–soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3–5?years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3–5?years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.  相似文献   

2.
We investigated the type and extent of degradation at three sites on the Agulhas Plain, South Africa: an old field dominated by the alien grass Pennisetum clandestinum Pers. (kikuyu), an abandoned Eucalyptus plantation, and a natural fynbos community invaded by nitrogen fixing—Australian Acacia species. These forms of degradation are representative of many areas in the region. By identifying the nature and degree of ecosystem degradation we aimed to determine appropriate strategies for restoration in this biodiversity hotspot. Vegetation surveys were conducted at degraded sites and carefully selected reference sites. Soil-stored propagule seed banks and macro- and micro-soil nutrients were determined. Species richness, diversity and native cover under Eucalyptus were extremely low compared to the reference site and alterations of the soil nutrients were the most severe. The cover of indigenous species under Acacia did not differ significantly from that in reference sites, but species richness was lower under Acacia and soils were considerably enriched. Native species richness was much lower in the kikuyu site, but soil nutrient status was similar to the reference site. Removal of the alien species alone may be sufficient to re-initiate ecosystem recovery at the kikuyu site, whereas active restoration is required to restore functioning ecosystems dominated by native species in the Acacia thicket and the Eucalyptus plantation. To restore native plant communities we suggest burning, mulching with sawdust and sowing of native species.  相似文献   

3.
A commonly overlooked aspect of conservation planning assessments is that wildlife managers are increasingly focused on habitats that contain non-native species. We examine this management challenge in the Gila River basin (150,730 km2), and present a new planning strategy for fish conservation. By applying a hierarchical prioritization algorithm to >850,000 fish records in 27,181 sub-watersheds we first identified high priority areas (PAs) termed “preservation PAs” with high native fish richness and low non-native richness; these represent traditional conservation targets. Second, we identified “restoration PAs” with high native fish richness that also contained high numbers of non-native species; these represent less traditional conservation targets. The top 10 % of preservation and restoration PAs contained common native species (e.g., Catostomus clarkii, desert sucker; Catostomus insignis, Sonora sucker) in addition to native species with limited distributions (i.e., Xyrauchen texanus, razorback sucker; Oncorhynchus gilae apache, Apache trout). The top preservation and restoration PAs overlapped by 42 %, indicating areas with high native fish richness range from minimally to highly invaded. Areas exclusively identified as restoration PAs also encompassed a greater percentage of native species ranges than would be expected by the random addition of an equivalent basin area. Restoration PAs identified an additional 19.0 and 26.6 % of the total ranges of two federally endangered species—Meda fulgida (spikedace) and Gila intermedia (Gila chub), respectively, compared to top preservation PAs alone—despite adding only 5.8 % of basin area. We contend that in addition to preservation PAs, restoration PAs are well suited for complementary management activities benefiting native fishes.  相似文献   

4.
We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non-Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0–10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.  相似文献   

5.
Trace element mobility in soils depends on contaminant concentration, chemical speciation, water movement, and soil matrix properties such as mineralogy, pH, and redox potential. Our objective was to characterize trace element dissolution in response to acidification of soil samples from two abandoned incinerators in the North Carolina Coastal Plain. Trace element concentrations in 11 soil samples from both sites ranged from 2 to 46 mg Cu kg(-1), 3 to 105 mg Pb kg(-1), 1 to 102 mg Zn kg(-1), 3 to 11 mg Cr kg(-1), < 0.1 to 10 mg As kg(-1), and < 0.01 to 0.9 mg Cd kg(-1). Acidified CaCl2 solutions were passed through soil columns to bring the effluent solution to approximately pH 4 during a 280-h flow period. Maximum concentrations of dissolved Cu, Pb, and Zn at the lowest pH of an experiment (pH 3.8-4.1) were 0.32 mg Cu L(-1), 0.11 mg Pb L(-1), and 1.3 mg Zn L(-1) for samples from the site with well-drained soils, and 0.25 mg Cu L(-1), 1.2 mg Pb L(-1), and 1.4 mg Zn L(-1) for samples from the site with more poorly drained soils. Dissolved Cu concentration at pH 4 increased linearly with increasing soil Cu concentration, but no such relationship was found for Zn. Dissolved concentrations of other trace elements were below our analytical detection limits. Synchrotron X-ray absorption near edge structure (XANES) spectroscopy showed that Cr and As were in their less mobile Cr(III) and As(V) oxidation states. XANES analysis of Cu and Zn on selected samples indicated an association of Cu(II) with soil organic matter and Zn(II) with Al- and Fe-oxides or franklinite.  相似文献   

6.
Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are important sinks for trace elements in soil-residual systems. The pH of the soil-residual system is often the most important chemical property governing trace element sorption, precipitation, solubility, and availability. Trace element phytoavailability in residual-treated soils is often estimated using soil extraction methods. However, spectroscopic studies show that sequential extraction methods may not be accurate in perturbed soil-residual systems. Plant bioassay is the best method to measure the effect of residuals on phytoavailability. Key concepts used to describe phytoavailability are (i) the salt effect, (ii) the plateau effect, and (iii) the soil-plant barrier. Metal availability in soil from metal-salt addition is greater than availability in soil from addition of metal-containing residuals. Plant metal content displays plateaus at high residual loadings corresponding to the residual's metal concentration and sorption capacity. The soil-plant barrier limits transmission of many trace elements through the food chain, although Cd (an important human health concern) can bypass the soil-plant barrier. Results from many studies that support these key concepts provide a basis of our understanding of the relationship between trace element chemistry and phytoavailability in residual-treated soils. Research is needed to (i) determine mechanisms for trace element retention of soil-residual systems, (ii) determine the effect of residuals on ecological receptors and the ability of residuals to reduce ecotoxicity in metal-contaminated soil, and (iii) predict the long-term bioavailability of trace elements in soil-residual systems.  相似文献   

7.
Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P < 0.001) for converted soils than those for cultivated soils but lower (P < 0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m?2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m?2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P < 0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).  相似文献   

8.
Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass (Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1 % median cover), or absent, across all treated sites but was high (10–70 %) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93 % relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93 %) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.  相似文献   

9.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

10.
We analyzed the past and current distribution and abundance of vegetation and wildlife to develop a wildlife habitat restoration plan for the Sweetwater Regional Park, San Diego County, California. Overall, there has been a substantial loss of native amphibians and reptiles, including four amphibians, three lizards, and 11 snake species. The small-mammal community was depauperate and dominated by the exotic house mouse (Mus musculus) and the native western harvest mouse (Reithrodontomys megalotis). It appeared that either house mice are exerting a negative influence on most native species or that they are responding positively to habitat degradation. There has apparently been a net loss of 13 mammal species, including nine insectivores and rodents, a rabbit, and three large mammals. Willow (Salix) cover and density and cottonwoods (Populus fremontii) had the highest number of positive correlations with bird abundance. There has been an overall net loss of 12 breeding bird species; this includes an absolute loss of 18 species and a gain of six species. A restoration plan is described that provides for creation and maintenance of willow riparian, riparian woodland, and coastal sage scrub vegetation types; guides for separation of human activities and wildlife habitats; and management of feral and exotic species of plants and animals.  相似文献   

11.
The cerco-fixo is an artisanal fishing trap widely used by traditional communities in the estuarine region of the southern coast of the state of São Paulo, Brazil. The primary goal of the study was to investigate, through ethnobotanical and ecological approaches, the use of plant species by traditional fishermen to build the cerco-fixo at Cardoso Island State Park and Cananéia Island. Ethnobotanical data were collected through interviews, direct observation, plant collection and identification, and document analysis. An ecological evaluation was also done comparing five 20 × 20 m plots in a managed area to five 20 × 20m plots in an unmanaged area, both within arboreal sandy soil vegetation called restinga arbórea, found within the Brazilian Atlantic Forest domain. This study involved 34 fishermen living at Cardoso and Cananéia Islands. The fishermen know more than 90 Atlantic Forest plant species that can be used to build the cerco-fixo. Tree species from the family Myrtaceae were the most quoted in the interviews. With respect to the ecological evaluation, the cluster analyses showed greater heterogeneity in terms of floristic composition (i.e. greater floristic dissimilarity) within the plots of the managed area. The analyses of diversity showed a slightly higher species richness and slightly lower values for Shannon, Simpson, Hurlbert’s PIE and Evenness indices in the managed area (59 species; H′ = 3.28; 1/D = 10.77; E = 0.80; Hurlbert’s PIE = 0.91) compared to the unmanaged area (54 species; H′ = 3.39; 1/D = 20.21; E = 0.85; Hurlbert’s PIE = 0.95). The Hutcheson’s t test showed no significant difference between both areas’ Shannon diversity indices (t: −1.04; p: 0.30). These results are attributed to the greater dominance of the palm species Euterpe edulis Mart. in the managed area (28.2% of the trees sampled at this area; n = 118), which equals twice the percentage of individuals of the same species found for the unmanaged area (14.6% of the sampled trees; n = 48). We discuss the impact of the fishermen’s harvesting practices in the managed area with an emphasis on three main points: (1) the harvesting practices are likely not contributing to a decrease in diversity in the managed area; (2) the greater heterogeneity in terms of floristic composition found for the managed area may reflect a mosaic pattern created by the opening of small tree-gaps distributed across this area over the course of more than 50 years; (3) the disturbance promoted by the fishermen’s harvesting practices can be compared to natural disturbances of low impact that create mosaic patterns in tropical forests. This study emphasizes the prominence of the human dimension in ecological processes and the importance of considering the perspectives of local people when discussing the conservation of the natural environments in which these people live.  相似文献   

12.
In the semiarid Horqin sandy land of northern China, establishment of artificial sand-fixing shrubs on desertified sandy lands is an effective measure to control desertification and improve the regional environment. Caragana microphylla Lam. and Artemisia halodendron Turcz. ex Bess. are two of the dominant native shrub species, which are adapted well to windy and sandy environments, and thus, are widely used in revegetation programs to control desertification in Horqin region. To assess the effects of artificially planting these two shrub species on restoration of desertified sandy land, soil properties and plant colonization were measured 6 years after planting shrubs on shifting sand dunes. Soil samples were taken from two depths (0–5 cm and 5–20 cm) under the shrub canopy, in the mid-row location (alley) between shrub belts, and from nonvegetated shifting sand dune (as a control). Soil fine fractions, soil water holding capacity, soil organic C and total N have significantly increased, and pH and bulk density have declined at the 0–5-cm topsoil in both C. microphylla and A. halodendron. At the 5–20 cm subsurface soil, changes in soil properties are not significant, with exception of bulk density and organic C concentration under the canopy of A. halodendron and total N concentration under the canopy of C. microphylla. Soil amelioration processes are initiated under the shrub canopies, as higher C and N concentrations were found under the canopies compared with alleys. At the same time, the establishment of shrubs facilitates the colonization and development of herbaceous species. A. halodendron proved to have better effects in fixing the sand surface, improving soil properties, and restoring plant species in comparison to C. microphylla.  相似文献   

13.
This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ‘ West bank’ project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha−1 yr−1 versus 13.8 t ha−1 yr−1) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha−1 yr−1 versus 12.1 t ha−1 yr−1). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality.  相似文献   

14.
The levels of zinc accumulated by roots, stems, and leaves of two plant species, Rubus ulmifolius and Phragmites australis, indigenous to the banks of a stream in a Portuguese contaminated site were investigated in field conditions. R. ulmifolius, a plant for which studies on phytoremediation potential are scarce, dominated on the right side of the stream, while P. australis proliferated on the other bank. Heterogeneous Zn concentrations were found along the banks of the stream. Zn accumulation in both species occurred mainly in the roots, with poor translocation to the aboveground sections. R. ulmifolius presented Zn levels in the roots ranging from 142 to 563 mg kg(-1), in the stems from 35 to 110 mg kg(-1), and in the leaves from 45 to 91 mg kg(-1), vs. average soil total Zn concentrations varying from 526 to 957 mg kg(-1). P. australis showed Zn concentrations in the roots from 39 to 130 mg kg(-1), in the stems from 31 to 63 mg kg(-1), and in the leaves from 37 to 83 mg kg(-1), for the lower average soil total Zn levels of 138 to 452 mg kg(-1) found on the banks where they proliferated. Positive correlations were found between the soil total, available and extractable Zn fractions, and metal accumulation in the roots and leaves of R. ulmifolius and in the roots and stems of P. australis. The use of R. ulmifolius and P. australis for phytoextraction purposes does not appear as an effective method of metal removing, but these native metal tolerant plant species may be used to reduce the effects of soil contamination, avoiding further Zn transfer to other environmental compartments.  相似文献   

15.
Soil pollution with Cd is an environmental problem common in the world, and it is necessary to establish what Cd concentrations in soil could be dangerous to its fertility from toxicity effects and the risk of transference of this element to plants and other organisms of the food chain. In this study, we assessed Cd toxicity on soil microorganisms and plants in two semiarid soils (uncultivated and cultivated). Soil ATP content, dehydrogenase activity, and plant growth were measured in the two soils spiked with concentrations ranging from 3 to 8000 mg Cd/kg soil and incubated for 3 h, 20 days, and 60 days. The Cd concentrations that produced 5%; 10%;, and 50%; inhibition of each of the two soil microbiological parameter studied (ecological dose, ED, values) were calculated using two different mathematical models. Also, the effect of Cd concentration on plant growth of ryegrass (Lolium perenne, L.) was studied in the two soils. The Cd ED values calculated for soil dehydrogenase activity and ATP content were higher in the agricultural soils than in the bare soil. For ATP inhibition, higher ED values were calculated than for dehydrogenase activity inhibition. The average yields of ryegrass were reduced from 5.03 to 3.56 g in abandoned soil and from 4.21 to 1.15 g in agricultural soil with increasing concentrations of Cd in the soil. Plant growth was totally inhibited in abandoned and agricultural soils at Cd concentrations above 2000 and 5000 mg/kg soil, respectively. There was a positive correlation between the concentration of Cd in the plants and the total or DTPA-extractable concentrations of Cd in the soil.  相似文献   

16.
Eichhornia crassipes was tested for its ability to bioconcentrate 8 toxic metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) commonly found in wastewater from industries. Young plants of equal size were grown hydroponically and amended with 0, 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 mM of each heavy metal individually for 21 days. The test plant had the lowest and the highest tolerance indices for Hg and Zn, respectively. A significant (P ≤ .05) reduction in biomass production was observed in metal treated plants compared with the control. All strace elements accumulated to higher concentrations in roots than in shoots. Trace element concentrations in tissues and the bioconcentration factors (BCF) were proportional to the initial concentration of individual metal in the growth medium and the duration of exposure. From a phytoremediation perspective, E. crassipes is a promising plant species for remediation of natural water bodies and/or wastewater polluted with low levels of Zn, Cr, Cu, Cd, Pb, Ag and Ni.  相似文献   

17.
Loss of grassland species resulting from activities such as off-road vehicle use increases the need for models that predict effects of anthropogenic disturbance. The relationship of disturbance by military training to plant species richness and composition on two soils (Foard and Lawton) in a mixed prairie area was investigated. Track cover (cover of vehicle disturbance to the soil) and soil organic carbon were selected as measures of short- and long-term disturbance, respectively. Soil and vegetation data, collected in 1-m2 quadrats, were analyzed at three spatial scales (60, 10, and 1 m2). Plant species richness peaked at intermediate levels of soil organic carbon at the 10-m2 and 1-m2 spatial scales on both the Lawton and Foard soils, and at intermediate levels of track cover at all three spatial scales on the Foard soil. Species composition differed across the disturbance gradient on the Foard soil but not on the Lawton soil. Disturbance increased total plant species richness on the Foard soil. The authors conclude that disturbance up to intermediate levels can be used to maintain biodiversity by enriching the plant species pool.  相似文献   

18.
Trace element speciation in poultry litter   总被引:8,自引:0,他引:8  
Trace elements are added to poultry feed for disease prevention and enhanced feed efficiency. High concentrations are found in poultry litter (PL), which raises concerns regarding trace element loading of soils. Trace metal cation solubility from PL may be enhanced by complexation with dissolved organic carbon (DOC). Mineralization of organo-As compounds may result in more toxic species such as As(III) and As(V). Speciation of these elements in PL leachates should assist in predicting their fate in soil. Elemental concentrations of 40 PL samples from the southeastern USA were determined. Water-soluble extractions (WSE) were fractionated into hydrophobic, anionic, and cationic species with solid-phase extraction columns. Arsenic speciation of seven As species, including the main As poultry feed additives, roxarsone (ROX; 3-nitro-4-hydroxyphenylarsonic acid) and p-arsanilic acid (p-ASA; 4-aminophenylarsonic acid), was performed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Total As concentrations in the litter varied from 1 to 39 mg kg(-1), averaging 16 mg kg(-1). Mean total Cu, Ni, and Zn concentrations were 479, 11, and 373 mg kg(-1), respectively. Copper and Ni were relatively soluble (49 and 41% respectively) while only 6% of Zn was soluble. Arsenic was highly soluble with an average of 71% WSE. Roxarsone was the major As species in 50% of PL samples. However, the presence of As(V) as the major species in 50% of the PL samples indicates that mineralization of ROX had occurred. The high solubility of As from litter and its apparent ready mineralization to inorganic forms coupled with the large quantity of litter that is annually land-applied in the USA suggests a potential detrimental effect on soil and water quality in the long term.  相似文献   

19.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   

20.
Selenium (Se) associated with reclaimed uranium (U) mine lands may result in increased food chain transfer and water contamination. To assess post-reclamation bioavailability of Se at a U mine site in southeastern Wyoming, we studied soil Se distribution, dissolution, speciation, and sorption characteristics and plant Se accumulation. Phosphate-extractable soil Se exceeded the critical limit of 0.5 mg/kg in all the samples, whereas total soil Se ranged from a low (0.6 mg/kg) to an extremely high (26 mg/kg) value. Selenite was the dominant species in phosphate and ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extracts, whereas selenate was the major Se species in hot water extracts. Extractable soil Se concentrations were in the order of KH2PO4 > AB-DTPA > hot water > saturated paste. The soils were undersaturated with respect to various Se solid phases, albeit with high levels of extractable Se surpassing the critical limit. Calcium and Mg minerals were the potential primary solids controlling Se dissolution, with dissolved organic carbon in the equilibrium solutions resulting in enhanced Se availability. Adsorption was a significant (r2 = 0.76-0.99 at P < 0.05) mechanism governing Se availability and was best described by the initial mass isotherm model, which predicted a maximum reserve Se pool corresponding to 87% of the phosphate-extractable Se concentrations. Grasses, forbs, and shrubs accumulated 11 to 1800 mg Se/kg dry weight. While elevated levels of bioavailable Se may be potentially toxic, the plants accumulating high Se may be used for phytoremediation, or the palatable forage species may be used as animal feed supplements in Se-deficient areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号