首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

2.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

3.
Agricultural tillage influences runoff and infiltration, but consequent effects on watershed hydrology are poorly documented. This study evaluated 25 yr (1971-1995) hydrologic records from four first-order watersheds in Iowa's loess hills. Two watersheds were under conventional tillage and two were under conservation (ridge) tillage, one of which was terraced. All four watersheds grew corn (Zea mays L.) every year. Flow-frequency statistics and autoregressive modeling were used to determine how conservation treatments influenced stream hydrology. The autoregressive modeling characterized variations in discharge, baseflow, and runoff at multi-year, annual, and shorter time scales. The ridge-tilled watershed (nonterraced) had 47% less runoff and 36% more baseflow than the conventional watershed of similar landform and slope. Recovery of baseflow after drought was quicker in the conservation watersheds, as evidenced by 365-d moving average plots, and 67% greater baseflow during the driest 2 yr. The two conventional watersheds were similar, except the steeper watershed discharged more runoff and baseflow during short (<30 d), wet periods. Significant multi-year and annual cycles occurred in all variables. Under ridge-till, seasonal (annual-cycle) variations in baseflow had greater amplitude, showing the seasonality of subsurface contaminant movement could increase under conservation practices. However, deviations from the modeled cycles of baseflow were also more persistent under conservation practices, indicating baseflow was more stable. Indeed, flow-frequency curves showed wet-weather discharge decreased and dry-weather discharge increased under conservation practices. Although mean discharge increased in the conservation watersheds, variance and skewness of daily values were smaller. Ridge tillage with or without terraces increased stream discharge but reduced its variability.  相似文献   

4.
ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

5.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

6.
Channelization is one of the most common solutions to urban drainage problems, despite the fact that channelized streams are frequently morphologically unstable, biologically unproductive, and aesthetically displeasing. There is increasing empirical and theoretical evidence to suggest that channelization may be counterproductive unless channels are designed to prevent the bank erosion and channel silting that often accompanies stream dredging. Many of the detrimental effects of channelization can be avoided, with little compromise in channel efficiency, by employing channel design guidelines that do not destroy the hydraulic and morphologic equilibria that natural streams possess. These guidelines include minimal straightening; promoting bank stability by leaving trees, minimizing channel reshaping, and employing bank stabilization techniques; and, emulating the morphology of natural stream channels. This approach, called stream restoration or stream renovation, is being successfully employed to reduce flooding and control erosion and sedimentation problems on streams in Charlotte, North Carolina.  相似文献   

7.
This collaborative study examined urbanization and impacts on area streams while using the best available sediment and erosion control (S&EC) practices in developing watersheds in Maryland, United States. During conversion of the agricultural and forested watersheds to urban land use, land surface topography was graded and vegetation was removed creating a high potential for sediment generation and release during storm events. The currently best available S&EC facilities were used during the development process to mitigate storm runoff water quality, quantity, and timing before entering area streams. Detailed Geographic Information System (GIS) maps were created to visualize changing land use and S&EC practices, five temporal collections of LiDAR (light detection and ranging) imagery were used to map the changing landscape topography, and streamflow, physical geomorphology, and habitat data were used to assess the ability of the S&EC facilities to protect receiving streams during development. Despite the use of the best available S&EC facilities, receiving streams experienced altered flow, geomorphology, and decreased biotic community health. These impacts on small streams during watershed development affect sediment and nutrient loads to larger downstream aquatic ecosystems such as the Chesapeake Bay.  相似文献   

8.
Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1–2 years before rehabilitation, 3–4 years after rehabilitation, and 10–11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.  相似文献   

9.
An issue in evaluating the success of agricultural management practices is the speed that eroded particles make their way through the downstream waters. In this study at Old Woman Creek (OWC) and Rock Creek (RC), two largely agricultural watersheds in Ohio, the flux of sediment and radionuclides (7Be, 210Pb, and 137Cs) in thunderstorm runoff was examined to better understand transport of eroded agricultural soils. The hydrograph in an agricultural area under no-till was similar in timing, but of lesser magnitude, than the hydrograph from a similar-sized area under conventional tillage. The activities of 210Pb and 7Be are linearly correlated and are higher in suspended sediments derived from no-till subbasins than those derived from conventionally tilled subbasins. A suspended sediment plume, identified by its unique radionuclide signature, was traced through 17 km of OWC stream channel in approximately 13.4 h (0.35 m/s). The downstream exponential decrease of 7Be activities in suspended sediments 3 to 12 h after passage of the sediment plume was used to estimate transport distances of suspended sediment from 2 to 17 km, respectively. Transport distances of suspended sediments were also calculated from wave kinematics and indicate that at OWC suspended sediment transport distances were longer in streams draining areas of no-till (19-26 km) than in the streams draining areas of conventional tillage (6-15 km). Suspended sediments travel 7 to 22 km at RC. The transport distances are long relative to the lengths of the stream channel and indicate that erosion control methods implemented in the watershed should be reflected quickly in downstream waters.  相似文献   

10.
Many small streams in coastal watersheds in the southeastern United States are modified for agricultural, residential, and commercial development. In the South Carolina Lower Coastal Plain, low‐relief topography and a shallow water table make stream channelization ubiquitous. To quantify the impacts of urbanization and stream channelization, we measured flow and sediment from an urbanizing watershed and a small forested watershed. Flow and sediment export rates were used to infer specific yields from forested and nonforested regions of the urbanizing watershed. Study objectives were to: (1) quantify the range of runoff‐to‐rainfall ratios; (2) quantify the range of specific sediment yields; (3) characterize the quantity and quality of particulate matter exported; and (4) estimate sediment yield attributable to agriculture, development, and channelization activities in the urbanizing watershed. Our results showed that the urban watershed exported over five times more sediment per unit area compared with the forested watershed. Sediment concentration was related to flow flashiness in the urban watershed and to flow magnitude in the forested watershed. Sediments from the forested watershed were dominated by organic matter, whereas mineral matter dominated sediment from the urban stream. Our results indicated that a significant shift in sediment quality and quantity are likely to occur as forested watersheds are transformed by urbanization in coastal South Carolina.  相似文献   

11.
Headwater streams are the primary sources of water in a drainage network and serve as a critical hydrologic link between the surrounding landscape and larger, downstream surface waters. Many states, including North Carolina, regulate activity in and near headwater streams for the protection of water quality and aquatic resources. A fundamental tool for regulatory management is an accurate representation of streams on a map. Limited resources preclude field mapping every headwater stream and its origin across a large region. It is more practical to develop a model for headwater streams based on a sample of field data that can then be extrapolated to a larger area of interest. The North Carolina Division of Water Quality has developed a cost‐effective method for modeling and mapping the location, length, and flow classification (intermittent and perennial) of headwater streams. We used a multiple logistic regression approach that combined field data and terrain derivatives for watersheds located in the Triassic Basins ecoregion. Field data were collected using a standard methodology for identifying headwater streams and origins. Terrain derivatives were generated from digital elevation models interpolated from bare‐earth Light Detection and Range data. Model accuracies greater than 80% were achieved in classifying stream presence and absence, stream length and perennial stream length, but were not as consistent in predicting intermittent stream length.  相似文献   

12.
ABSTRACT: Farmers can generate environmental benefits (improved water quality and fisheries and wildlife habitat), but they may not be able to quantify them. Furthermore, farmers may reduce their incomes from managing lands to produce these positive externalities but receive little monetary compensation in return. This study simulated the relationship between agricultural practices, water quality, fish responses to suspended sediment and farm income within two small watersheds, one of a cool water stream and one of a warm water stream. Using the Agricultural Drainage and Pesticide Transport (ADAPT) model, this study related best management practices (BMPs) to calculated instream suspended sediment concentrations by estimating sediment delivery, runoff, base flow, and streambank erosion to quantify the effects of suspended sediment exposure on fish communities. By implementing selected BMPs in each watershed, annual net farm income declined $18,000 to $28,000 (1 to 3 percent) from previous levels. “Lethal” fish events from suspended sediments in the cool water watershed decreased by 60 percent as conservation tillage and riparian buffers increased. Despite reducing suspended sediments by 25 percent, BMPs in the warm water watershed did not reduce the negative response of the fisheries. Differences in responses (physical and biological) between watersheds highlight potential gains in economic efficiency by targeting BMPs or by offering performance based “green payments.”  相似文献   

13.
In the early 2000s, a phosphorus nutrient trading plan (NTP) requiring best management practices (BMPs) to be installed as pollution abatement strategies to offset phosphorus waste from the Alpine Cheese Company was implemented in four subwatersheds of Sugar Creek in northeast Ohio. To assess the impacts of the Alpine NTP, 49 sites were sampled approximately biweekly from 2010 to 2018 for phosphate, total phosphorus, nitrate, ammonia, and total nitrogen. In addition, the Ohio Environmental Protection Agency conducted stream health surveys at 21 sites before and after the BMPs were implemented. This study evaluated the potential impact of 68 BMPs implemented under the NTP on the observed changes in nutrient concentrations and stream health indicators. Most nutrient concentrations observed during high discharge conditions showed significant declines from 2010 to 2018 for all subwatersheds, which was most likely due to BMPs that reduced erosion and surface runoff. However, there were fewer significant declines and some significant increases in nutrient levels during low discharge conditions, suggesting a possible contribution from legacy nutrient sources. Most sites reported increases in stream health indicators, but many streams are still below recommended levels. Collectively, the installation of BMPs and decreases in nutrient concentrations observed during high discharge conditions can be attributed to the NTP and likely contributed to improved stream health.  相似文献   

14.
Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices.  相似文献   

15.
16.
Zink, Jason M., Gregory D. Jennings, and G. Alexander Price, 2012. Morphology Characteristics of Southern Appalachian Wilderness Streams. Journal of the American Water Resources Association (JAWRA) 48(4): 762‐773. DOI: 10.1111/j.1752‐1688.2012.00647.x Abstract: Watersheds without urbanization or impacts from logging are rare in the southern Appalachian Mountains. The Joyce Kilmer/Slickrock Wilderness of North Carolina and Tennessee contains 24 km2 of old‐growth forest, with the balance of the wilderness in a mature second‐growth forest. The watersheds of Little Santeetlah and Slickrock Creek are located within the wilderness. Morphological information, including channel dimensions and longitudinal profiles, was gathered from 14 alluvial stream reaches in these watersheds. The study sites had drainage areas from 0.25 to 41.6 km2 and stream slopes from 0.014 to 0.104 m/m. Bankfull cross‐section dimensions of the study stream reaches were strongly correlated to drainage area across the observed range of slopes and bed morphology. Cross‐section area and width relationships for the streams in this study did not differ significantly from regional curves for the mountain physiographic region of North Carolina. Observations of these reaches did not suggest a definitive rule regarding the proportion of steps and riffles in streams. Pools occupied greater than 50% of the length in all stream reaches with slopes less than 0.07 m/m. Significant correlation existed between step height ratio and slope, suggesting that step height can be approximated as the product of channel width and slope. Riffle length and riffle slope ratios were also significantly correlated with slope, though pool spacing was not.  相似文献   

17.
Well-established perennial vegetation in riparian areas of agricultural lands can stabilize the end points of gullies and reduce their overall erosion. The objective of this study was to investigate the impacts of riparian land management on gully erosion. A field survey documented the number of gullies and cattle access points in riparian forest buffers, grass filters, annual row-cropped fields, pastures in which the cattle were fenced out of the stream, and continuously, rotationally and intensive rotationally grazed pastures in three regions of Iowa. Gully lengths, depths and severely eroding bank areas were measured. Gullies exhibited few significant differences among riparian management practices. The most significant differences were exhibited between conservation and agricultural management practices, an indication that conservation practices could reduce gully erosion. Changes in pasture management from continuous to rotational or intensive rotational grazing showed no reductions in gully erosion. It is important to recognize that more significant differences among riparian management practices were not exhibited because the conservation and alternative grazing practices had recently been established. As gully formation is more impacted by upland than riparian management, gully stabilization might require additional upland conservation practices. The existence of numerous cattle access points in pastures where cattle have full access to the stream also indicates that these could be substantial sources of sediment for streams. Finally, the gully banks were less important sediment contributors to streams than the streambanks. The severely eroding bank areas in streams were six times greater than those in the gullies in the monitored reaches.  相似文献   

18.
We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.  相似文献   

19.
Increased concern about potential losses of phosphorus (P) from agricultural fields receiving animal waste has resulted in the implementation of new state and federal regulations related to nutrient management. In response to strengthened nutrient management standards that require consideration of P, North Carolina has developed a site-specific P indexing system called the Phosphorus Loss Assessment Tool (PLAT) to predict relative amounts of potential P loss from agricultural fields. The purpose of this study was to apply the PLAT index on farms throughout North Carolina in an attempt to predict the percentage and types of farms that will be forced to change management practices due to implementation of new regulations. Sites from all 100 counties were sampled, with the number of samples taken from each county depending on the proportion of the state's agricultural land that occurs in that county. Results showed that approximately 8% of producers in the state will be required to apply animal waste or inorganic fertilizer on a P rather than nitrogen basis, with the percentage increasing for farmers who apply animal waste (approximately 27%). The PLAT index predicted the greatest amounts of P loss from sites in the Coastal Plain region of North Carolina and from sites receiving poultry waste. Loss of dissolved P through surface runoff tended to be greater than other loss pathways and presents an area of concern as no best management practices (BMPs) currently exist for the reduction of in-field dissolved P. The PLAT index predicted the areas in the state that are known to be disproportionately vulnerable to P loss due to histories of high P applications, high densities of animal units, or soil type and landscapes that are most susceptible to P loss.  相似文献   

20.
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号