首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats to deliver oxygen into groundwater to induce biodegradation of the pesticides atrazine, terbutryn and fenamiphos contaminating groundwater in Perth, Western Australia. The polymer mats, composed of woven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2-m-long flow-through soil columns. The polymer mats proved efficient in delivering dissolved oxygen to anaerobic groundwater. Dissolved oxygen concentrations increased from <0.2 mg l(-1) to approximately 4 mg l(-1). Degradation rates of atrazine in oxygenated groundwater were relatively high with a zero-order rate of 240-380 microg l(-1) or a first-order half-life of 0.35 days. Amendment with an additional carbon source showed no significant improvement in biodegradation rates, suggesting that organic carbon was not limiting biodegradation. Atrazine degradation rates estimated in the column experiments were similar to rates determined in laboratory culture experiments, using pure cultures of atrazine-mineralising bacteria. No significant degradation of terbutryn or fenamiphos was observed under the experimental conditions within the time frames of the study. Results from these experiments indicate that remediation of atrazine in a contaminated aquifer may be achievable by delivery of oxygen using an in situ polymer mat system.  相似文献   

2.
Chaillan F  Gugger M  Saliot A  Couté A  Oudot J 《Chemosphere》2006,62(10):1574-1582
Cyanobacterial mats are ubiquitous in tropical petroleum-polluted environments. They form a high biodiversity microbial consortium that contains efficient hydrocarbons degraders. A cyanobacterial mat collected from a petroleum-contaminated environment located in Indonesia was studied for its biodegradation potential. In the field, the natural mat was shown to degrade efficiently the crude oil present in the environment. This natural mat demonstrated also a strong activity of degradation on model crude oil under laboratory conditions. In axenic cultures, the monospecific cyanobacterium Phormidium animale that constitute the bulk of the biomass did not exhibit any degradative capacity on hydrocarbons in the range of C13-C35 carbon atom number either in autotrophic or heterotrophic conditions. It was concluded that this cyanobacterial strain living on a heavily contaminated site had no direct effect on biodegradation of crude oil, the degradation activity being exclusively achieved by the other microorganisms present in the microbial consortium of the mat.  相似文献   

3.
The impact of Hurricane Sandy on the Hudson-Raritan estuary (HRE) provided a valuable case study for exploring interactions between long-term environmental degradation, new climatic disturbance stressors, and human behavioral responses. We extend previous research on the ecological effects of major storms to compare water quality and biological parameters three years before and three years after Hurricane Sandy and consider how ecosystem shifts relate to anglers’ perceptions. Results indicate that water clarity and nutrients returned to pre-storm conditions in about one year, while shifts in the biological community, including a significant increase in harmful algal species and declines in zooplankton and Atlantic menhaden, persisted for multiple years, and anglers continued to fish amidst ecosystem decline. Biotic recovery time in the HRE was longer than reports for other shallow estuaries frequently disturbed by hurricanes. Ecological and social responses suggest that the post-storm regime shifts and continued fishing pressure could further environmental degradation.  相似文献   

4.
Hydroponic root mats for wastewater treatment—a review   总被引:2,自引:0,他引:2  
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.  相似文献   

5.
The value of coastal wetlands for hurricane protection   总被引:7,自引:0,他引:7  
Coastal wetlands reduce the damaging effects of hurricanes on coastal communities. A regression model using 34 major US hurricanes since 1980 with the natural log of damage per unit gross domestic product in the hurricane swath as the dependent variable and the natural logs of wind speed and wetland area in the swath as the independent variables was highly significant and explained 60% of the variation in relative damages. A loss of 1 ha of wetland in the model corresponded to an average USD 33,000 (median = USD 5000) increase in storm damage from specific storms. Using this relationship, and taking into account the annual probability of hits by hurricanes of varying intensities, we mapped the annual value of coastal wetlands by 1 km x 1 km pixel and by state. The annual value ranged from USD 250 to USD 51,000 ha(-1) yr(-1), with a mean of USD 8240 ha(-1) yr(-1) (median = USD 3230 ha(-1) yr(-1)) significantly larger than previous estimates. Coastal wetlands in the US were estimated to currently provide USD 23.2 billion yr(-1) in storm protection services. Coastal wetlands function as valuable, selfmaintaining "horizontal levees" for storm protection, and also provide a host of other ecosystem services that vertical levees do not. Their restoration and preservation is an extremely cost-effective strategy for society.  相似文献   

6.
7.
Densely occupied drainage basins and coastal zones in developing countries that are facing economic growth are likely to suffer from moderate to severe environmental impacts regarding different issues. The catchment basins draining towards the Atlantic coast from northeastern to southern Brazil include a wide range of climatic zones and diverse ecosystems. Within its borders lies the Atlantic rain forest, significant extensions of semiarid thorn forests (caatinga), vast tree and scrub woodlands (cerrado) and most of the 6670 km of the Brazilian coast and its marine ecosystems. In recent decades, human activities have increasingly advanced over these natural resources. Littoralization has imposed a burden on coastal habitats and communities. Most of the native vegetation of the cerrado and caatinga was removed and only 7% of the original Atlantic rainforest still exists. Estuaries, bays and coastal lagoons have been irreversibly damaged. Land uses, damming and water diversion have become the major driving forces for habitat loss and aquatic ecosystem modification. Regardless of the contrast between the drought-affected northeastern Brazil and the much more prosperous and industrialized southeastern/southern Brazil, the impacts on habitat and communities were found equally severe in both cases. Attempts to halt environmental degradation have not been effective. Instead of focusing on natural resources separately, it is suggested that more integrated environmental policies that focus on aquatic ecosystems integrity are introduced.  相似文献   

8.
The massive oil discharge in the Saudi Arabian coast at the end of the 1991 Gulf War is used here as a natural experiment to study the ability of microbial mats to transform oil residues after major spills. The degree of oil transformation has been evaluated from the analysis of the aliphatic and aromatic hydrocarbons by gas chromatography (GC) and GC coupled to mass spectrometry (GC-MS). The oil-polluted microbial mat samples from coastal environments exhibited an intermediate degree of transformation between that observed in superficial and deep sediments. Evaporation, photo-oxidation and water-washing seemed to lead to more effective and rapid elimination of hydrocarbons than cyanobacteria and its associated microorganisms. Furthermore, comparison of some compounds (e.g. regular isoprenoid hydrocarbons or alkylnaphthalenes) in the oil collected in the area after the spill or in the mixtures retained by cyanobacterial growth gave rise to an apparent effect of hydrocarbon preservation in the microbial mat ecosystems.  相似文献   

9.
This study has investigated the influence of synoptic weather patterns and long-range transport episodes on the concentrations of several compounds related to different aerosol sources (EC, OC, SO42?, Ca2+, Na+, K+, 210Pb, levoglucosan and dicarboxylic acids) registered in PM10 or PM2.5 aerosol samples collected at three remote background sites in central Europe. Air mass back-trajectories arriving at these sites have been analysed by statistical methods. Firstly, air mass back-trajectories have been grouped into clusters. Each cluster corresponds to specific meteorological scenarios, which were extracted and discussed. Finally, redistributed concentration fields have been computed to identify the main potential source regions of the different key aerosol components. A marked seasonal pattern is observed in the occurrence of the different clusters, with fast westerly and northerly Atlantic flows during winter and weak circulation flows in summer. Spring and fall were characterised by advection of moderate flows from northeastern and eastern Europe. Significant inter-cluster differences were observed for concentrations of receptor aerosol components, with the highest concentrations of EC, OC, SO42?, K+ and 210Pb associated with local and mesoscale aerosol sources located over central Europe related to enhanced photochemical processes. Emissions produced by fossil fuel and biomass burning processes from the Baltic countries, Byelorussia, western regions of Russia and Kazakhstan in spring and fall also contribute to elevated levels of EC, OC, SO42?, K+ and 210Pb. In the summer period long-range transport episodes of mineral dust from North-African deserts were also frequently detected, which caused elevated concentrations of coarse Ca2+ at sites. The baseline aerosol concentrations in central Europe at the high altitude background sites were registered in winter, with the exception of coarse Na+. While the relatively high concentrations of Na+ can be explained by sea salt advected from the Atlantic, the low levels of other aerosol components are caused by efficient aerosol scavenging associated to advections of Atlantic air masses, as well as lower emissions of these species over the Atlantic compared to those over the European continent and very limited vertical air mass exchange over the continent.  相似文献   

10.
This article addresses the role of Atlantic walrus (Odobenus rosmarus rosmarus) in present-day Avanersuaq from anthropological and biological perspectives, and asks whether or not sustainable resource utilisation is a useful concept in northwest Greenland. We describe the relations that unfold around walrus and walrus hunting, in the communities living adjacent to the North Water polynya on the eastern side of Smith Sound. We examine the interplay of walrus population abundance, hunting practices, uses, and formal (governmental) and informal (traditional) ways of regulating the hunt, and we analyse how walruses acquire multiple values as they circulate in different networks. Sustainable resource utilisation, we conclude, is a concept that is relevant in Avanersuaq and beyond, because it works as a biological standard, and hence organises laws, norms, and practices of formal management. Simultaneously, the term is problematic, because it ignores manifold levels of human and societal values connected to walrus.  相似文献   

11.
The relation of interannual connection between Asian dust outbreaks and stratosphere-to-troposphere transport (STT) in spring was suggested by the dust and tritium variations in the Mount Wrangell ice core, Alaska in [Yasunari, T.J., Shiraiwa, T., Kanamori, S., Fujii, Y., Igarashi, M., Yamazaki, K., Benson, C.S., Hondoh, T., 2007. Intra-annual variations in atmospheric dust and tritium in the North Pacific region detected from an ice core from Mount Wrangell, Alaska. J. Geophys. Res., 112, D10208. doi: 10.1029/2006JD008121]. However, these impacts on the ice core site in each event scale have not been investigated. Hence, the present paper focuses on the material transport and deposition processes for further understanding these impacts on the ice core. The variations in dust and tritium concentrations in spring in an ice core taken at Mt. Wrangell, Alaska are explained by meteorological analysis and simulation of trajectories associated with Asian dust outbreaks and STT. Material transport and deposition at Mt. Wrangell are examined in two contrasting years (2001 and 2002). Dust and tritium concentrations both reached peak values in the early spring of 2002, while the dust peak occurred in early spring and the tritium peak occurred in late spring in 2001. Six severe East Asian transpacific dust storms over this period are modeled by forward trajectory and meteorologically analyzed. It is found that 5 of 6 events contributed to the ice core record in Alaska. Stratospheric air is also transported to the ice core site in most cases. Tritium deposition is found to have been suppressed in the cases of the 2001 dust storms due to lack of snowfall at appropriate times. Taken the detailed transport and deposition processes after the severe dust storms with atmospheric circulations into account, we can well explain spring dust and tritium variations in the Mount Wrangell ice core.  相似文献   

12.
The present study explores the tolerance and metal removal response of a well-developed 2-week-old Phormidium mat after long-term exposure to Cu2+-enriched medium. Cu2+ enrichment inhibited increase in mat biomass in a concentration-dependent manner. Mat area and the number of entrapped air bubbles decreased as Cu2+ concentration increased in the medium. Decrease in number of air bubbles obviously reflects the adverse effect of Cu2+ on photosynthetic performance of the mat. Metal enrichment did not substantially alter the amount of pigments, such as chlorophyll a, chlorophyll b, carotenoids, and phycocyanin, in the mat. Enhancement of Cu2+ concentration in the medium led to changes in species composition of the test mat; however, Phormidium bigranulatum always remained the dominant organism. Relative share of green algae and some cyanobacterial taxa, namely, Lyngbya sp. and Oscillatoria tenuis, in the mat were increased by Cu2+ enrichment. The mat successfully removed 80 to 94 % Cu2+ from the growth medium containing 10 to 100 μM Cu2+. Extracellular polysaccharides, whose share increased in the mat community after metal addition, seem to have contributed substantially to metal binding by the mat biomass.  相似文献   

13.
The biochemical acidogenic potential (BAP) test is an anaerobic characterization method for wastewater. Fermentable organic fractions are obtained through modeling BAP test results. This method was compared to more common fractionation methods such as settling, coagulation, and respirometry, but no direct relationship was found. Biochemical acidogenic potential testing was thus considered to bring new and complementary information. The settleable matter accounted for approximately 50% of the fermentable matter, with a rate comparable to that of aerobic hydrolysis, suggesting a potential assimilable carbon source that could be liberated in sewers or in anaerobic processes. It was also observed that respirometry could underestimate the amount of fermentable substrates while overestimating that of hydrolyzable matter and of heterotrophic biomass involved in anaerobic processes. The BAP fractions are related to the wastewater capacity to produce volatile fatty acids, which are the main substrates of the micro-organisms responsible for enhanced biological phosphorus removal (EBPR). The potential contribution of the BAP fractionation to assist the design, operation, and modeling of the activated-sludge EBPR processes was discussed.  相似文献   

14.
Aquatic floating plants on BioHaven mats were tested for their potential use as a Best Management Practice to be incorporated within existing stormwater detention ponds. Plants were analyzed for their capability to remove nutrient-pollution in parallel with the study of ecological dynamics. Experiments were carried out in cylindrical mesocosms of 5 m diameter and 1.2 m height, above-ground pools with a water volume of 14 m3. The design parameters tested were for 5% and 10% vegetated floating island coverage of the mesocosm, both with and without shoreline plants called littoral zone. This littoral shelf was 0.5 m thick, graded at a downward slope of 1:5 toward the center using loamy soil with low organic matter content, excavated from below turf grass. Endemic plant species were chosen for the experimental location in central Florida based on a wetland identification manual by the Florida Department of Environmental Protection to ensure the study was not compromised by unique climate requirements of the plants. Nutrient and aquatic chemical conditions such as pH, dissolved oxygen, temperature, turbidity, and chlorophyll a were monitored to understand their relationships to the general wetland ecosystem. Real-time polymerase chain reaction analysis identified the microbial activity near the rhizospheric zone. Logistical placement considerations were made using spatial sampling across the horizontal plane of the mesocosms, beneath and around the root zone, to determine if nutrients tend to aggregate around the floating island. This study concluded that the application of floating islands as a stormwater technology can remove nutrients through plant uptake and biological activity. The most cost-effective size in the outdoor mesocosms was 5% surface area coverage of the mat.  相似文献   

15.
In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems.  相似文献   

16.
In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m2/d, 97/112 mg/m2/d, and 1167/1342 mg/m2/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique.  相似文献   

17.
Effect of copper in the protistan community of activated sludge   总被引:4,自引:0,他引:4  
Nicolau A  Martins MJ  Mota M  Lima N 《Chemosphere》2005,58(5):605-614
Protists have proved to be an interesting tool for assessing the occurrence of pollution in wastewater treatment systems along with its role in the control of pollution itself through grazing of dispersed bacteria and maintenance of a healthy trophic web in those artificial ecosystems. Two sets of assays were carried on in a bench scale pilot plant in order to study the response of the activated sludge community of protists to the exposure of copper: the first set was carried on with synthetic sewage and the second one with real sewage. The results emphasize the ability of activated sludge biological communities to survive and to react to toxicants and highlight the role of protistan communities as indicators of toxicants entrance in treatment systems.  相似文献   

18.
Laikre L  Palm S  Ryman N 《Ambio》2005,34(2):111-119
The pattern for distribution of genetic variation within and between populations is referred to as the genetic population structure of the species. To avoid depletion of genetic resources sustainable management should be based on knowledge of this structure. We discuss key aspects of genetic population structure in the context of identifying biological units for fisheries management, suggesting three basic types of structuring: distinct populations; continuous change; and no differentiation. The type of structure determines how units for genetically sustainable management are to be identified. We also review what is currently known regarding the genetic population structure of fishes exploited in the Swedish part of the Baltic Sea, and conclude that sufficient genetic information is lacking for most of the species. This is a serious problem, particularly considering that populations of several commercially exploited fishes are declining and some exhibit recruitment problems. For six species, Atlantic herring, Atlantic salmon, brown trout, European eel, turbot, and pike, sufficient genetic data are available to provide at least basic information on genetic structure and genetic units for biologically sustainable use. Current management practices do not sufficiently consider these data.  相似文献   

19.
Reductions in North American sulfur dioxide (SO2) emissions promoted expectations that aquatic ecosystems in southeastern Canada would soon recover from acidification. Only lakes located near smelters that have dramatically reduced emissions approach this expectation. Lakes in the Atlantic provinces, Quebec and Ontario affected only by long-range sources show a general decline in sulfate (SO4(2-)) concentrations, but with a relatively smaller compensating increase in pH or alkalinity. Several factors may contribute to the constrained (or most likely delayed) acidity response: declining base cation concentrations, drought-induced mobilization of SO4(2-), damaged internal alkalinity generation mechanisms, and perhaps increasing nitrate or organic anion levels. Monitoring to detect biological recovery in southeastern Canada is extremely limited, but where it occurs, there is little evidence of recovery outside of the Sudbury/Killarney area. Both the occurrence of Atlantic salmon in Nova Scotia rivers and the breeding success of Common Loons in Ontario lakes are in fact declining although factors beyond acidification also play a role. Chemical and biological models predict that much greater SO2 emission reductions than those presently required by legislation will be needed to promote widespread chemical and latterly, biological recovery. It may be unrealistic to expect that pre-industrial chemical and biological conditions can ever be reestablished in many lakes of southeastern Canada.  相似文献   

20.
In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号