首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Three experiments were performed to determine whether brood care in honey bee colonies is influenced by colony genetic structure and by social context. In experiment 1, there were significant genotypic biases in the relative likelihood of rearing queens or workers, based on observations of individually labeled workers of known age belonging to two visually distinguishable subfamilies. In experiment 2, no genotypic biases in the relative likelihood of rearing drones or workers was detected, in the same colonies that were used in experiment 1. In experiment 3, there again were significant genotypic differences in the likelihood of rearing queens or workers, based on electrophoretic analyses of workers from a set of colonies with allozyme subfamily markers. There also was an overall significant trend for colonies to show greater subfamily differences in queen rearing when the queens were sisters (half- and super-sisters) rather than unrelated, but these differences were not consistent from trial to trial for some colonies. Results of experiments 1 and 3 demonstrate genotypic differences in queen rearing, which has been reported previously based on more limited behavioral observations. Results from all three experiments suggest that genotypic differences in brood care are influenced by social context and may be more pronounced when workers have a theoretical opportunity to practice nepotism. Finally, we failed to detect persistent interindividual differences in bees from either subfamily in the tendency to rear queen brood, using two different statistical tests. This indicates that the probability of queen rearing was influenced by genotypic differences but not by the effect of prior queen-rearing experience. These results suggest that subfamilies within a colony can specialize on a particular task, such as queen rearing, without individual workers performing that task for extended periods of time.  相似文献   

2.
Summary Honey bee workers are able to nurse or to destroy and thus to recognize the capped queen cells containing a pupa. Fatty acid esters, especially methyl oleate, methyl palmitate and ethyl oleate were found in significant amounts on the queen pupal cuticle. Methyl oleate, the major component, along with smaller amounts of methyl linoleate and methyl linolenate, were involved in the recognition of queen cells by workers. In natural conditions of the colony, queen cells containing a paraffin pupal lure with methyl oleate were accepted 5.9 days by workers, releasing about 1.8 queen pupa equivalents during that period, when control cells (without ester) were kept only 2.1 days. Although these esters are non specific to honey bees, they are of great importance in social regulation of the honey bee colony.  相似文献   

3.
Summary Multiple mating by queens in social Hymenoptera with single locus sex determination may be an adaptation to reduce the effect of genetic load caused by the production of diploid males, if there is a concave relationship between queen fitness and the proportion of diploid male offspring in the colony. In this situation queens should be selected to reduce the variance in the production of diploid male offspring by multiple mating. It has been suggested that this concave relationship occurs in species such as the honey bee, Apis mellifera, in which reproduction occurs near the peak of colony population. This paper suggests that the timing of diploid male removal may influence mating frequency, with early removal of diploid males favoring multiple mating and late removal of diploid males favoring single mating. This idea is explored in two ways. A mathematical model shows that cell use in the brood area of species that rear young in cells will be more efficient with multiple mating. This would favor multiple mating in species, such as the honey bee, in which brood rearing is constrained by the usable area of the brood chamber. Secondly, comparison of polyandrous honey bees (early removal of diploid males as young larvae) with monandrous fire ants, Solenopsis invicta, and Melipona bees (non-removal of immature diploid males) suggests that in the species without diploid male removal, variance reduction may reduce queen fitness. Suggestions are made for testing this hypothesis.  相似文献   

4.
Summary The social cohesiveness of eusocial insect colonies is maintained primarily through the utilization of pheromones. In this study we quantitatively elucidated the production, secretion, and transmission of 9-keto2(E)-decenoic acid (9-ODA), one of the components of the mandibular gland pheromone of the honey bee queen Apis mellifera; this is the only identified primer pheromone complex in the eusocial insects. Mated queens produce 12–400 g of 9-ODA/day, or between 10% and 170% the average amount found in the glands at any one time. Approximately 0.5 g of 9-ODA is maintained on the body surface of queens by an equilibrium between exudation, internalization, tracking on the comb, and removal by workers. Retinue bees, attending the queen, remove the greatest amount, although the role of the wax as both a sink and a medium for pheromone transfer has been previously underestimated. Only about 1 in 10 retinue workers pick up substantial quantities of pheromone while attending the queen and, within seconds, most of the acquired 9-ODA is found externally on the abdomen, or in the gut. These attendants, also called messenger bees, transfer 9-ODA to other workers, mostly through direct contacts, but also via the wax. A model evaluating the pathways and relative quantities of 9-ODA transferred throughout the nest is presented. As well as being important for a basic understanding of the system, the results have implications for the proper design and use of pheromones in bee management.Offprint requests to: K. Naumann  相似文献   

5.
In social-insect colonies, cooperation among nestmates is generally stabilized by their high genetic similarity. Thus, fitness gained through cooperation drops quickly as the number of reproductive females (queens) increases. In this respect, wasps of the tribe Epiponini have attracted special attention, because the colonies have tens, or even hundreds of queens. It has been empirically or genetically confirmed that relatedness within nestmates can be elevated by a mechanism known as cyclical monogyny, under which new queens are produced only after the number of old queens is reduced to one. Another likely factor that can increase relatedness within nestmates under polygyny is comb partitioning by queens. If queens concentrate their egg laying on one or a subset of the available combs, then workers may be able to rear closer relatives by focusing their work on the comb where they emerged. Using microsatellite markers, we tested the hypotheses of cyclical monogyny and comb partitioning by queens increasing relatedness within nestmates under polygyny in the large-colony epiponine wasp, Polybia paulista. There were no significant differences between relatedness within combs and between combs, and thus we ruled out the possibility that each queen partitions reproduction between combs. However, as cyclical monogyny predicts, a lower effective number of queens contributed to queen production than to worker production. Cyclical monogyny explained well the observed smaller effective number of queens for new queens than that for workers, but failed to explain the stable relatedness values throughout colony cycles.Communicated by L. Keller  相似文献   

6.
When a colony becomes queenless and without the possibility of requeening, honeybee workers initiate reproduction and lay male eggs about a week later. Assays in which two bees were confined in a small arena revealed that they establish a reproductive dominance hierarchy, i.e., one worker demonstrates greater ovarian development than her paired bee. Reproductive dominance is independent of relatedness, and can be established between full sisters, cousins, or random nestmates. A social environment, however, is obligatory, as singly housed bees fail to develop ovaries on the same time scale. Allowing varying degrees of social interactions between the paired bees revealed that olfaction of volatile bee compounds, as well as tactile communication, seem to provide the necessary social environment. Ovarian development was accompanied by the production of queen-like Dufours gland secretion in these workers. Especially notable was the increase in the queen-like esters. This increase was tightly linked to ovarian development and not necessarily to the dominance status of the bees in the pair. Thus, the occurrence of queen-like esters can serve as a reliable fertility signal. Advertising ovarian status may recruit helper workers with less developed ovaries (and which are less likely to successfully reproduce before colony breakdown) to assist their nestmates and thereby gain inclusive fitness. Revealing the role of Dufours gland secretion as a fertility signal adds another dimension to our understanding of how queen pheromones operate. The mandibular-gland secretion is a good predictor of dominance hierarchy, being correlated with false-queen characteristics but not fertility, whereas Dufours gland secretion is a good predictor of fertility but not dominance hierarchy.Communicated by R.F.A. Moritz  相似文献   

7.
In most social insect colonies, workers do not attempt to lay eggs in the presence of a queen. However, in the honey bee (Apis mellifera), a rare phenotype occurs in which workers activate their ovaries and lay large numbers of male eggs despite the presence of a fecund queen. We examined the proximate mechanisms by which this ‘anarchistic’ behaviour is expressed. We tested the effects of brood and queen pheromones on retinue attraction and worker ovary activation using caged worker bees. We found no difference between the anarchistic and wild type queen pheromones in the retinue response elicited in either wild type or anarchistic workers. Further, we found that anarchistic queens produce a pheromone blend that is as effective at inhibiting ovary activation as the wild type queen pheromone. However, anarchistic workers are less inhibited by queen pheromones than their wild type counterparts, in a dose-dependent manner. These results show that the anarchistic phenomenon is not due to changes in the production of queen pheromones, but rather is due in part to a shift in the worker response to these queen-produced signals. In addition, we demonstrate the dose-dependent nature of the effect of queen pheromones on honey bee worker ovary activation.  相似文献   

8.
Division of reproductive labor in insect societies is often based on worker self-restraint and both queen and worker policing. Workers of many hitherto studied wasps, bees and ants do not lay eggs in the presence of a queen. However, it is presently unclear how far these observations in a few select clades can be generalized. We investigated if and how queens maintain a reproductive monopoly in colonies of the elongate twig ant, Pseudomyrmex gracilis, a member of the previously unstudied ant subfamily Pseudomyrmecinae. Colonies are usually headed by a single, singly mated queen (monogyny, monandry). Workers therefore would be more closely related to males produced by other workers (r?=?0.375) than to the sons of queens (r?=?0.25). Nevertheless, workers appear to refrain from laying male-destined eggs in the presence of the queen. In queenless conditions, workers form dominance hierarchies by antennal boxing, and only one or a few high-ranking individuals readily begin to lay eggs. When returned into a queenright colony, egg-laying workers are immediately bitten, stung and expelled or killed by other workers. While the composition of cuticular hydrocarbons clearly differed between castes, it less clearly reflected worker ovarian development. An association with worker ovarian development that would allow workers to monitor the reproductive status of nestmates could only be tentatively postulated for certain substances. Our study broadens our knowledge about reproductive conflict in social Hymenoptera and shows that worker sterility in the presence of a queen is more common in monogynous, monandrous ants than expected from relatedness alone.  相似文献   

9.
How organisms allocate limited resources to reproduction is critical to their fitness. The size and number of offspring produced have been the focus of many studies. Offspring size affects survival and growth and determines offspring number in the many species where there is a trade-off between size and number. Many social insects reproduce by colony fission, whereby young queens and accompanying workers split off from a colony to form new colonies. The size of a new colony (number of workers) is set at the time of the split, and this may allow fine tuning size to local conditions. Despite the prevalence of colony fission and the ecological importance of social insects, little is known of colony fission except in honey bees. We studied colony fission in the ant Cataglyphis cursor. For clarity, "colony" and "nest" refer to colonies before and after colony fission, respectively (i.e., each colony fissions into several nests). The reproductive effort of colonies was highly variable: Colonies that fissioned varied markedly in size, and many colonies that did not fission were as large as some of the fissioning colonies. The mother queen was replaced in half of the fissioning colonies, which produced 4.0 +/- 1.3 (mean +/- SD) nests of markedly varied size. Larger fissioning colonies produced larger nests but did not produce more nests, and resource allocation among nests was highly biased. When a colony produced several nests and the mother queen was not replaced, the nest containing the mother queen was larger than nests with a young queen. These results show that the pattern of resource allocation differs between C. cursor and honey bees. They also suggest that C. cursor may follow a bet-hedging strategy with regard to both the colony size at which fission occurs and the partitioning of resources among nests. In addition, colony fission may be influenced by the age and/or condition of the mother queen, and the fact that workers allocating resources among nests have incomplete knowledge of the size and number of nests produced. These results show that the process of colony fission is more diverse than currently acknowledged and that studies of additional species are needed.  相似文献   

10.
In group-level recognition, discriminators use sensory information to distinguish group members and non-members. For example, entrance guards in eusocial insect colonies discriminate nestmates from intruders by comparing their odour with a template of the colony odour. Despite being a species-rich group of eusocial bees closely related to the honey bees, stingless bee nestmate recognition is a relatively little-studied area. We studied Frieseomelitta varia, a common Brazilian species of stingless bee known as marmelada. By measuring the rejection rates of nestmate and non-nestmate worker bees by guards, we were able to show that guards became significantly less accepting (from 91 to 46%) of nestmates that had acquired odour cues from non-nestmate workers; however, guards did not become significantly more accepting (from 31 to 42%) of non-nestmates that had acquired equivalent amounts of odour cues from the guard’s nestmates. These data strongly suggest that guards use an “undesirable–absent” system in recognition, whereby incoming conspecific workers are only accepted if undesirable cues are absent, despite the presence of desirable cues. We suggest that an undesirable–absent system is adaptive because robbing by conspecifics may be an important selective factor in F. varia, which would lead to selection for a non-permissive acceptance strategy by guards.  相似文献   

11.
This study compares two basic models for the origin and maintenance of colony gestalt odor in the polygynous ant species Cataglyphis niger. In the first model, queens are centers of de novo biosynthesis and distribution of recognition odors (“queen-centered” model); in the second, colony odors are primarily synthesized and distributed by workers (“worker-centered” model). We tested the behavioral patterns that are predicted from each model, and verified by biochemical means the distributional directionality of these signals. Encounters between nestmates originating from split colonies were as amicable as between nestmates from non-split colonies; queenless ants were as aggressive as their queenright nestmates, and both were equally aggressed by alien ants. These results indicate that queens have little impact on the recognition system of this species, and lend credence to the worker-centered model. The queen-centered model predicts that unique queen substances should be produced in appreciable quantities and that, in this respect, queens should be more metabolically active than workers. Analysis of the chemical composition of postpharyngeal glands (PPGs) or cuticular extracts of queens and workers revealed high similarity. Quantitatively, queens possessed significantly greater amounts of hydrocarbons in the PPG than workers, but the amount on the thoracic epicuticle was the same. Queens, however, possess a lower hydrocarbon biosynthesis capability than workers. The biochemical evidence thus refutes the queen-centered model and supports a worker-centered model. To elucidate the directionality of cue distribution, we investigated exchange of hydrocarbons between the castes in dyadic or group encounters in which selective participants were prelabeled. Queens tended to receive more and give less PPG content, whereas transfer to the epicuticle was low and similar in all encounters, as predicted from the worker-centered hypothesis. In the group encounters, workers transferred, in most cases, more hydrocarbons to the queen than to a worker. This slight preference for the queen is presumably amplified in a whole colony and can explain their copious PPG content. We hypothesize that preferential transfer to the queen may reflect selection to maintain her individual odor as close to the average colony odor as possible. Received: 4 November 1997 / Accepted after revision: 5 February 1998  相似文献   

12.
Unlike workers of all other honey bee (Apis mellifera) subspecies, workers of the Cape honey bee of South Africa (A. mellifera capensis) reproduce thelytokously and are thus able to produce female offspring that are pseudoclones of themselves. This ability allows workers to compete with their queen over the maternity of daughter queens and, in one extreme case, has led to a clonal lineage of workers becoming a social parasite in commercially managed populations of A. mellifera scutellata. Previous work (Jordan et al., Proc R Soc Lond B Biol Sci 275:345, 2008) showed that, in A. mellifera capensis, 59% of queen cells produced during swarming events contained the offspring of workers and that, of these, 65% were the offspring of non-natal workers. Here, we confirm that a substantial proportion (38.5%) of offspring queens is worker-laid. We additionally show that: (1) Although queens produce most diploid female offspring sexually, we found some homozygous or hemizygous queen offspring, suggesting that queens also reproduce by thelytoky. These parthenogenetic individuals are probably nonviable beyond the larval stage. (2) Worker-laid offspring queens are viable and become the resident queen at the same frequency as do sexually produced queen-laid offspring queens. (3) In this study, all but one of the worker-derived queens were laid by natal workers rather than workers from another nest. This suggests that the very high rates of social parasitism observed in our previous study were enhanced by beekeeping manipulations, which increased movement of parasites between colonies.  相似文献   

13.
Honey bee colonies furnish their nests with two types of comb distinguished by cell size: large cells for rearing males (drone comb) and small cells for rearing workers (worker comb). The bees actively regulate the relative quantity of each type, a behavior likely to be important in setting a colony's sex ratio. Experimental analysis of the information pathways and control mechanisms responsible for this regulation found the following results. The amount of drone comb in a nest is governed by negative feedback from drone comb already constructed. This feedback depends on the workers having direct contact with the drone comb in their nest, but does not depend on the queen's contact with the comb. The comb itself, rather than the brood within it, is sufficient to provide the negative feedback, although the brood may also contribute to the effect. These findings show that drone comb regulation does not depend on the queen acting as a centralized information gatherer and behavioral controller. Instead, the evidence points to a decision-making process distributed across the population of worker bees, a control architecture typical of colony organization in honey bees and other large-colony insect societies. Received: 24 May 1997 / Accepted after revision: 30 August 1997  相似文献   

14.
Loss of aggression between social groups can have far-reaching effects on the structure of societies and populations. We tested whether variation in the genetic structure of colonies of the termite Nasutitermes corniger affects the probability of aggression toward non-nestmates and the ability of unrelated colonies to fuse. We determined the genotypes of workers and soldiers from 120 colonies at seven polymorphic microsatellite loci. Twenty-seven colonies contained offspring of multiple founding queens or kings, yielding an average within-colony relatedness of 0.33. Genotypes in the remaining 93 colonies were consistent with reproduction by a single queen and king or their progeny, with an average within-colony relatedness of 0.51. In standardized assays, the probability of aggression between workers and soldiers from different colonies was an increasing function of within-colony relatedness. The probability of aggression was not affected significantly by the degree of relatedness between colonies, which was near zero in all cases, or by whether the colonies were neighbors. To test whether these assays of aggression predict the potential for colony fusion in the field, we transplanted selected nests to new locations. Workers and soldiers from colonies that were mutually tolerant in laboratory assays joined their nests without fighting, but workers and soldiers that were mutually aggressive in the assays initiated massive battles. These results suggest that the presence of multiple unrelated queens or kings promotes recognition errors, which can lead to the formation of more complex colony structures.  相似文献   

15.
When cooperation is based on shared genetic interests, as in most social insect colonies, mechanisms which increase the genetic similarity of group members may help to maintain sociality. Such mechanisms can be especially important in colonies with many queens because within-colony relatedness drops quickly as queen number increases. Using microsatellite markers, we examined the Old World, multiple-queen, swarm-founding wasp Polybioides tabidus which belongs to the ropalidiine tribe, and found that relatedness among the workers was four times higher than what would be expected based on queen number alone. Relatedness was elevated by a pattern of queen production known as cyclical oligogyny, under which, queen number varies, and daughter queens are produced only after the number of old queens has reduced to one or a very few. As a result, the queens are highly related, often as full sisters, elevating relatedness among their progeny, the workers. This pattern of queen production is driven by collective worker control of the sex ratios. Workers are three times more highly related to females than to males in colonies with a single queen while they are more equally related to males and females in colonies with more queens. As a result of this difference, workers will prefer to produce new queens in colonies with a single queen and males in colonies with many queens. Cyclical oligogyny has also evolved independently in another group of swarm-founding wasps, the Neotropical epiponine wasps, suggesting that collective worker control of sex ratios is widespread in polistine wasps. Received: 22 May 2000 / Revised: 24 August 2000 / Accepted: 4 September 2000  相似文献   

16.
Summary An equilibrium model is developed which seeks to explain the regulation of queen rearing in honeybee colonies preparing to swarm. The model postulates that there is a balance between nurse bees becoming inhibited from queen rearing and nurses losing their inhibition, and that whether a colony does or does not rear queens reflects the equilibrium percentage of inhibited nurses. This model leads to a quantitative prediction about the size of a conoly's nurse population at which queen rearing should start. Comparing the model's predictions with empirical observations pinpoints data needed for a more complete explanation of control of queen rearing. In particular, the model suggests a central regulatory role for density-dependent changes in the behaviors involved in queen substance dispersal.  相似文献   

17.
Division of labor during honey bee colony defense   总被引:5,自引:0,他引:5  
Summary Some worker honey bees respond to major disturbances of the colony by flying around the assailant and possibly stinging; they are a subset of the bees involved in colony defense. These defenders have an open-ended age distribution similar to that of foragers, but defensive behavior is initiated at a younger age than foraging is. Behavioral and genetic evidence shows that defenders and foragers are distinct groups of older workers. Behaviorally, defenders have less worn wings than foragers, suggesting less flight activity. Genetically, defenders differ in allozyme frequencies, demonstrating different subfamily composition from foragers in the same colony. They also differ in allozyme frequencies from guards in the same colony, providing further evidence for division of labor associated with colony defense. We use this information to develop a model for honey bee colony defense involving at least two distinct groups of workers and we propose that the non-guard defenders be called soldiers, due to their important role in colony defense.Offprint requests to: M.D. Breed  相似文献   

18.
The fitness of a social insect colony depends greatly on the quality (i.e., mating ability, fecundity, and offspring viability) of its queen(s). In honeybees, there is marked variation in the quality of young queens that compete in a series of lethal duels to replace a colonys previous queen. Workers interact with queens during these duels and could increase their inclusive fitness by biasing the outcomes of the duels in favor of high-quality queens. We predicted that workers will have more antagonistic interactions (chasing, grabbing, clamping) and fewer beneficent interactions (feeding, grooming) with low-quality than high-quality queens. To test this prediction, we reared queens from 0-day-old, 2-day-old, and 3-day-old worker larvae in observation colonies undergoing queen replacement, thus producing high-quality, low-quality, and very low-quality queens, respectively. Immediately after each queen emerged, we observed her for 1 h to record her interactions with the workers. Subsequent morphological measurement of the queens confirmed that initial larval age had a significant effect on queen quality. However, there was no consistent effect of queen quality on the rates of worker–queen interactions, thus falsifying our hypothesis. The mean power of our tests was high (0.599), therefore the probability of a type II error (a false negative) is low. We conclude that if workers actively select high-quality queens, then they do so prior to queen duels, during queen development. We suggest that each worker–queen interaction has a distinct adaptive significance rather than forming a suite of behavior that favors particular queens (e.g., chasing repels any queen that approaches a queen cell, thus protecting all queen cells from destruction).Communicated by M. Giurfa  相似文献   

19.
In mature post-emergence colonies of the tropical primitively eusocial polistine wasp Ropalidia marginata, the queen is not a behaviourally dominant individual. Nevertheless, she completely suppresses reproduction by the workers and becomes the sole egg-layer in the colony. Mechanisms by which a female is able to establish her exclusive reproductive status in the colony can be investigated by examining dominance-submission relationships and hierarchy formation at particular stages of the colony cycle when reproductive competition is behaviourally manifest. Observations on the behaviour of R. marginata females (1) during early stages of colony-founding, (2) when potential queens challenge the existing queen, and (3) immediately after queen replacement show that these wasps use highly aggressive dominance interactions to establish their reproductive status. Both the frequency and the intensity of dominance behaviours are significantly higher at these stages than those observed at phases of the colony when there is no apparent reproductive strife. Once her position as the only egg-layer of the colony has been established, the levels of dominance interactions initiated by the queen decrease and the nature of these interactions also becomes comparatively milder. Thus, the mechanisms by which a queen establishes her social status in her colony and those by which she continues to suppress reproduction of her nestmates in the absence of overt physical dominance may be quite different. Received: 17 November 1995/Accepted after revision: 20 April 1996  相似文献   

20.
Summary Although honeybee workers are usually infertile, in queenless colonies some workers can develop ovaries and produce offspring. Therefore the classical Darwinian fitness of workers is not zero. Experimental studies in the Cape honey bee (Apis mellifera capensis) reveal a huge genetic variation for individual fitness of workers. The present study with a one locus, two allele model for reproductive dominance of workers shows that a balanced system between colony level and individual within colony selection plausibly explains the phenomenon of a high genetic variance of worker fitness. In particular, a frequent occurrence of queenless colonies in the population leads to stable polymorphic equilibria. Also the multiple mating system of the honey bee queen supports the propagation of alleles causing reproductive dominance of workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号