首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
文章研究了一种适用于高氯废水的无汞测定化学需氧量的方法。水样中加入10 mL重铬酸钾和15 mL浓硫酸,消解0.5h,冷却至室温再加入0.3 g硫酸银,消解1.5 h,测得其COD测定值,根据COD Cl-Cl-的关系曲线得到由氯离子产生的COD Cl-,将COD测定值减去C OD Cl-即为水样的COD真实值。实验证明,该方法适用于氯离子浓度不超过5 000 mg/L废水COD的测定。  相似文献   

2.
为研究曝气及投加双氧水对废酸厂废气湿法脱酸中废水COD的处理效能和工艺运行的稳定性,我们进行了一系列实验。以COD为主要评价指标,考察不同方法对废酸厂废气湿法脱酸中废水COD的去除效果。方案1.通过曝气方式,以空气为媒介,降低废水中COD含量;方案2.通过投加双氧水,降低废水中COD含量;结果表明,仅曝气实验,可以改善废水中的COD值,处理效率为70%,而使用双氧水对废水的COD的处理效率达25%。曝气的同时投加双氧水可以在去除COD中发挥最大的效果,去除率为87%,可以作为一种新型去除废酸厂废气湿法脱酸中废水COD的方法推广使用。  相似文献   

3.
COD是化学需氧量的英文缩写,是评价水体污染的重要指标。COD的测定方法有重铬酸钾法和高锰酸钾法[1],国标方法测定工业废水中COD系采用重铬酸钾法[2],但操作繁琐,耗时较长。因而很多单位采用COD快速测定仪来检测废水中  相似文献   

4.
铁炭微电解工艺具有处理范围广、以废治废、成本低的优点,但对高浓度有机废水的处理效果有限。文章以沥青废水对象,采用不同方法对铁炭微电解进行强化处理,以期提高废水COD去除率。结果表明:单纯使用微电解技术,沥青废水的COD去除率为60%,使用超声、外加电场、Fe-Al-C微电解及催化剂MnO2进行强化后,废水的COD去除率分别为78.3%、83.3%、82%和76.5%,相比于单独微电解COD去除率均有较大提高,其中,Fe-Al-C是最为简单有效的微电解强化方法,经过处理后废水COD降为835 mg/L。  相似文献   

5.
研究了芬顿(Fenton)-混凝法对于印染企业废水处理厂二沉池出水中苯胺类化合物在化学需氧量(COD)达标前提下的处理效果。结果表明,芬顿-混凝法适用于该印染废水尾水中COD与苯胺类化合物的综合达标(GB 4287-2012)去除。Fe2+、H2O2加入量对COD和苯胺类化合物的去除影响较大:当Fe SO4·7H2O与H2O2加入量分别为750 mg/L与1 m L/L时,30 min内废水中COD去除率达到69.5%,苯胺去除率达到100%,均可达到表二间接排放标准;当Fe SO4·7H2O与H2O2加入量分别为1 000 mg/L与1 m L/L时,30 min内废水中COD去除率能够达到83.9%,苯胺去除率达到100%,均可达到表二直接排放标准。研究还表明,混凝反应阶段p H的回调使用石灰对污染物的去除具有促进作用。  相似文献   

6.
以国标HJ828-2017为基础,进行高氯废水COD的测定。实验中省去了掩蔽剂硫酸汞的使用,考察氯离子氧化完全的时间,绘制氯离子耗氧标准曲线;通过延迟加入催化剂硫酸银,结合氯离子耗氧标准曲线,降低氯离子对COD结果的影响,同时考察硫酸银加入量对实验结果的影响。结果表明,氯离子易被重铬酸钾氧化,氧化时间50min较为适宜,硫酸银加入过少会使反应不完全,加入过多会增加实验成本。  相似文献   

7.
采用微电解-芬顿氧化的组合工艺处理末端焦化废水,考察静态实验中微电解填料的铁碳比、过氧化氢添加方式及加入量、曝气量、反应时间、pH值等不同条件因素对COD去除率的影响情况,确定最佳条件是铁碳质量比是2.5∶1,分批加入过氧化氢,且加入量为0.25 mL/L,曝气量为1.25 L/min,pH值为3,反应时间140 min.最终实现将焦化废水COD的去除率达88%以上的目的.按静态实验的各因素条件进行动态实验,试验结果COD去除率可达87%以上,处理后℃OD质量浓度为为91 mg/L,达到排放标准.同时处理后焦化废水的颜色变淡.  相似文献   

8.
采用微电解-Fenton氧化法对酸化压裂模拟废水进行处理,有效地降低了废水的COD,试验中考察了微电解反应进水pH值、铁碳质量比、反应时间以及联合Fenton工艺中废水的pH值、H2O2加入量、反应时间对COD去除率的影响。结果表明,微电解法工艺的优化条件:pH2.5左右,反应停留时间120min,铁碳质量比5∶1;Fenton反应的优化条件:微电解出水调pH4.0左右,反应时间75min,H2O(2质量分数为10%)加入量7.5ml/L,最终处理的出水COD去除率达64.8%,联合工艺的COD去除率比单一的微电解法提高了26.3%,为后续的处理创造了有利的条件。  相似文献   

9.
活性污泥法处理焦化废水COD不达标原因分析   总被引:2,自引:0,他引:2  
采用GC/MS对国内某焦化厂的主要工艺废水及生化外排水中的有机污染物进行了系统检测,分析了各主要工艺废水及生化外排水中有机污染物的组成。结果表明,造成外排水COD不达标的主要原因是由于废水中含有难降解的含氮杂环类和多环芳烃类有机物。这两类有机物主要来自焦油和苯回收精制工艺过程中产生的废水,占生化外排水中所有有机物提供的总COD的72.64%。若对这几种废水进行单独处理则可保证生化外排废水COD达标。  相似文献   

10.
焦化废水厌氧生物降解影响因素的识别   总被引:2,自引:0,他引:2  
基于一系列焦化废水处理实地工程考察而尚未发现高浓度焦化废水厌氧产甲烷成功案例的实际问题,以广东韶钢焦化废水工程中COD为(4100±200)mg·L~(-1)的原水为研究对象,通过检测COD、TOC和苯酚等关键水质指标浓度变化及气体产量,以浓度梯度稀释的方法考察影响焦化废水厌氧降解的因素及其浓度阈值,主要涉及硫氰化物、苯酚、硫化物和氰化物,同时分析碳源结构改变所带来的厌氧降解特性的变异.结果发现:在pH为(7.0±0.5)、温度为(35.0±0.5)℃的条件下,当焦化废水COD被稀释至1500~1800 mg·L~(-1),接种活性污泥,能够检测到厌氧产甲烷的现象;在COD稀释至1800 mg·L~(-1)左右的焦化废水中分别投加不同浓度的硫氰化物、苯酚、硫化物和氰化物时,发现其单抑制浓度分别处在500~1500、1100~1250、200~250和30~40 mg·L~(-1);向未解除抑制的焦化废水(COD为2100 mg·L~(-1))中投加等COD浓度的乙酸钠、葡萄糖和甲醇3种常用的工业碳源改变原有的碳源结构时,发现乙酸型产甲烷菌的活性被抑制,而氢营养型产甲烷菌的活性并没受到明显抑制.上述研究结果说明,高浓度焦化废水难以厌氧降解,抑制因素的解除可以使厌氧菌激活,其中,氢营养型产甲烷菌较乙酸型产甲烷菌能够耐受更高的毒性物质浓度阈值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号