首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

2.
Soil fumigation is an important management practice for controlling soil pests and enabling successful replanting of orchards. Reducing emissions is required to minimize the possible worker and bystander risk and the contribution of fumigants to the atmosphere as volatile organic compounds that lead to the formation of ground-level ozone. A field trial was conducted in a peach orchard replant field to investigate the effects of fumigation method (shank-injection vs. subsurface drip-application treatments) and surface treatments (water applications and plastic tarps) on emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from shank-injection of Telone C-35 and drip application of InLine. Treatments included control (no water or soil surface treatment); standard high-density polyethylene (HDPE) tarp, virtually impermeable film (VIF) tarp, and pre-irrigation, all over shank injection; and HDPE tarp over and irrigation with micro-sprinklers before and after the drip application. The highest 1,3-D and CP emission losses over a 2-wk monitoring period were from the control (36% 1,3-D and 30% CP) and HDPE tarp (43% 1,3-D and 17% CP) over shank injection. The pre-irrigation 4 d before fumigation and VIF tarp over shank injection had similar total emission losses (19% 1,3-D and 8-9% CP). The HDPE tarp and irrigations over subsurface drip-application treatments resulted in similar and the lowest emission losses (12-13% 1,3-D, and 2-3% CP). Lower fumigant concentrations in the soil-gas phase were observed with drip-application than in the shank-injection treatments; however, all treatments provided 100% kill to citrus nematodes in bags buried from 30 to 90 cm depth. Pre-irrigation and drip application seem to be effective to minimize emissions of 1,3-D and CP.  相似文献   

3.
Due to ever-increasing state and federal regulations, the future use of fumigants is predicted on reducing negative environmental impacts while offering sufficient pestcontrol efficacy. To foster the development of a best management practice, an integrated tool is needed to simultaneously predict fumigant movement and pest control without having to conduct elaborate and costly experiments. The objective of this study was (i) to present a two-dimensional (2-D) mathematical model to describe both fumigant movement and pestcontrol and (ii) to evaluate the model by comparing the simulated and observed results. Both analytical and numerical methods were used to predict methyl iodide (MeI) transport and fate. To predict pest control efficacy, the concentration-time index (CT) was defined and a two-parameter logistic survival model was used. Dose-response curves were experimentally determined for MeI against three types of pests (barnyardgrass [Echinochloa crus-galli] seed, citrus nematode [Tylenchulus semipenetrans], and fungi [Fusarium oxysporum]). Methyl iodide transport and pest control measurements collected from a 2-D experiimental system (60 by 60 cm) were used to test the model. Methyl iodide volatilization rates and soil gas-phase concentrations over time were accurately simulated by the model. The mass balance analysis indicates that the fraction of MeI degrading in the soil was underestimated when determined by the appearance of iodide concentration. The experimental results showed that after 24 h of MeI fumigation in the 2-D soil chamber, fungal population was not suppressed; > 90% of citrus nematodes were killed; and barnyardgrass seeds within 20-cm distance from the center were affected. These experimental results were consistent with the predicted results. The model accurately estimated the MeI movement and control of various pests and is a powerful tool to evaluate pesticides in terms of their negative environmental impacts and pest control under various environmental conditions and application methods.  相似文献   

4.
Effect of formulation on the behavior of 1,3-dichloropropene in soil   总被引:1,自引:0,他引:1  
The fumigant 1,3-dichloropropene (1,3-D) has been identified as a partial replacement for methyl bromide (CH3Br) in soil fumigation. 1,3-Dichloropropene is formulated for soil fumigation as Telone II (Dow AgroSciences, Indianapolis, IN) for shank application and as an emulsifiable concentrate (EC) (Telone EC or InLine; Dow AgroSciences) for drip application. This study investigated the effect of formulation on the phase partitioning, transformation rate, and volatilization of 1,3-D isomers. Air-water partitioning coefficients (K(H)) were slightly higher for Telone II than for Telone EC, presumably due to the higher apparent water solubility of the EC formulation. Sorption of 1,3-D isomers in two soils was not affected by formulation. Formulation had no significant effect on the rate of 1,3-D transformation in water or soil. In general, differences in the rate of 1,3-D transformation and phase partitioning due to formulation as Telone II or Telone EC were very small. Thus, the effect of formulation on 1,3-D fate may be ignored in transformation and phase partition of 1,3-D in water and soil. Packed soil columns without plastic tarp indicated that with relatively shallow subsurface (10 cm) drip application of Telone EC, emission of 1,3-D isomers was more rapid and produced greater maximum instantaneous flux than deeper (30 cm) shank injection of Telone II. Both application methods resulted in the same cumulative emissions for both isomers, 45% for (E)-1,3-D and approximately 50% for (Z)-1,3-D. These results suggest that for drip application of fumigants to be effective in reducing emissions, the fumigant must be applied at sufficient depths to prevent rapid volatilization from the soil surface if the water application rate does not sufficiently restrict vapor diffusion.  相似文献   

5.
The soil fumigants 1,3-dichloropropene (1,3-D) and chloropicrin (CP) are often used for controlling soil-borne plant pathogens and parasitic nematodes before reestablishing new vineyards and orchards. To evaluate crop safety and environmental risks with the replant fumigation, four field experiments were performed over 2 yr to examine 1,3-D and CP lateral movement away from the treated fields. Shank injection with or without a virtually impermeable film (V1F) was used in two vineyard fumigation experiments, and spot drip application without tarp cover was used in two orchard experiments. Results showed that 1,3-D and CP gases moved laterally to 6 m from the treated fields when the fumigants were applied by shank injection. The maximum 1,3-D or CP soil gas concentration at 6 m was approximately 10 ng cm(-3) when the fumigated plot was not cover with a tarp. With VIF, the measured maximum concentration increased to approximately 100 ng cm(-3). In the spot drip application, maximum 1,3-D and CP gas concentrations reached approximately 100 ng cm(-3) but at 1.5 m radial distance from the point of fumigant injection.  相似文献   

6.
Best management decisions in soil fumigation require informed management selections of soil type, field geometry, application dosage, and depth to maximize fumigant distribution for efficacy and minimize off-site transport for environmental safety. An efficacy- or exposure-based concentration-time exposure index (CTEI) was used to serve as a continuous quantitative efficacy assessment for soil fumigation by subsurface drip irrigation using numerical model simulations. The CTEI was defined as the ratio between the soil volume where concentration-time (CT) exceeded a threshold value for a particular pest-fumigant combination and the total soil volume required for fumigation treatment. Applications of CTEI as a simple efficacy index were demonstrated by simulating combinations of three soil types (loam, sandy loam, sand); three field configurations consisting of 102- and 203-cm-wide bed systems and a flat surface system; three application depths (15, 30, 45 cm); and two application rates (82 and 327 kg ha(-1)) for 1,3-dichloropropene against citrus nematode (Tylenchulus semipenetrans) using a threshold air-phase CT value of 12 microg h cm(-3) obtained from a separate field study. For soil fumigation by subsurface drip irrigation, the order of importance in optimizing CTEI was soil type, depth of application and depth of treatment, dosage, and field configuration. Model simulation using CTEI as a numeric efficacy index can be an effective alternative to assist in the planning of field trials for making final management decisions concerning soil fumigation or other pesticide applications.  相似文献   

7.
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3?) leaching. We sought to assess the trade-offs in NH3 and NO3? losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3? leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha?), and the lowest emissions were from unamended soil (<1 kg NH-N ha?1). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3? leaching losses were small (<25 kg NO3-N ha?1) and similar between treatments, except for the first winter when NO3? leaching was fivefold greater with injection. Because NO3? leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3? leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.  相似文献   

8.
Effect of organic material on field-scale emissions of 1,3-dichloropropene   总被引:1,自引:0,他引:1  
Soil fumigation is important for growing many fruits and vegetable crops, but fumigant emissions may contaminate the atmosphere. A large-scale field experiment was initiated to test the hypothesis that adding composted municipal green waste to the soil surface in an agricultural field would reduce atmospheric emissions of the 1,3-dichloropropene (1,3-D) after shank injection at a 133 kg ha(-1) application rate. Three micrometeorological methods were used to obtain fumigant flux density and cumulative emission values. The volatilization rate was measured continuously for 16 d, and the daily peak volatilization rates for the three methods ranged from 12 to 24 μg m(-2) s(-1). The total 1,3-D mass that volatilized to the atmosphere was approximately 14 to 68 kg, or 3 to 8% of the applied active ingredient. This represents an approximately 75 to 90% reduction in the total emissions compared with other recent field, field-plot, and laboratory studies. Significant reductions in the volatilization of 1,3-D may be possible when composted municipal green waste is applied to an agricultural field. This methodology also provides a beneficial use and disposal mechanism for composted vegetative material.  相似文献   

9.
Municipal sewage sludge is often used on arable soils as a source of nitrogen and phosphorus, but it also contains organic contaminants that may be leached to the ground water. Di(2-ethylhexyl)phthalate (DEHP) is a priority pollutant that is present in sewage sludge in ubiquitous amounts. Column experiments were performed on undisturbed soil cores (20-cm depth x 20-cm diameter) with three different soil types: a sand, a loamy sand, and a sandy loam soil. Dewatered sewage sludge was spiked with 14C-labeled DEHP (60 mg kg(-1)) and bromide (5 g kg(-1)). Sludge was applied to the soil columns either as five aggregates, or homogeneously mixed with the surface layer. Also, two leaching experiments were performed with repacked soil columns (loamy sand and sandy loam soil). The DEHP concentrations in the effluent did not exceed 1.0 microg L(-1), and after 200 mm of outflow less than 0.5% of the applied amount was recovered in the leachate in all soils but the sandy loam soil with homogeneous sludge application (up to 3.4% of the applied amount recovered). In the absence of macropore flow, DEHP in the leachate was primarily sorbed to mobilized dissolved organic macromolecules (DOM, 30.3 to 81.3%), while 2.4 to 23.6% was sorbed to mobilized mineral particles. When macropore flow occurred, this changed to 16.5 to 37.4% (DOM) and 36.9 to 40.6% (mineral particles), respectively. The critical combination for leaching of considerable amounts of DEHP was homogeneous sludge application and a continuous macropore structure.  相似文献   

10.
Reducing ammonia (NH3) emissions through slurry incorporation or other soil management techniques may increase nitrate (NO3) leaching, so quantifying potential losses from these alternative pathways is essential to improving slurry N management. Slurry N losses, as NH3 or NO3 were evaluated over 4 yr in south-central Wisconsin. Slurry (i.e., dairy cow [Bos taurus] manure from a storage pit) was applied each spring at a single rate (-75 m3 ha(-1)) in one of three ways: surface broadcast (SURF), surface broadcast followed by partial incorporation using an aerator implement (AER-INC), and injection (INJ). Ammonia emissions were measured during the 120 h following slurry application using chambers, and NO3 leaching was monitored in drainage lysimeters. Yield and N3 uptake of oat (Avena sativa L.), corn (Zea mays L.), and winter rye (Secale cereale L.) were measured each year, and at trial's end soils were sampled in 15- to 30-cm increments to 90-cm depth. There were significant tradeoffs in slurry N loss among pathways: annual mean NH3-N emission across all treatments was 5.3, 38.3, 12.4, and 21.8 kg ha(-1) and annual mean NO3-N leaching across all treatments was 24.1, 0.9, 16.9, and 7.3 kg ha' during Years 1, 2, 3, and 4, respectively. Slurry N loss amounted to 27.1% of applied N from the SURF treatment (20.5% as NH3-N and 6.6% as NO,-N), 23.3% from AER-INC (12.0% as NH3-N and 11.3% as NO3-N), and 9.19% from INJ (4.4% as NH3-N and 4.7% as NO3-N). Although slurry incorporation decreased slurry N loss, the conserved slurry N did not significantly impact crop yield, crop N uptake or soil properties at trial's end.  相似文献   

11.
A field study was conducted to determine the fate of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) within the root zone (0 to 90 cm) of a sandy soil cropped with sorghum [Sorghum bicolor (L.) Moench] in Gainesville, Florida. Atrazine was uniformly applied at a rate of 1.12 kg ai. ha(-1) to a sorghum crop under moderate irrigation, optimum irrigation, and no irrigation (rainfed), 2 d after crop emergence. Bromide as a tracer for water movement was applied to the soil as NaBr at a rate of 45 kg Br ha(-1), 3 d before atrazine application. Soil water content, atrazine, and Br concentrations were determined as a function of time using soil samples taken from the root zone. Atrazine sorption coefficients and degradation rates were determined by depth for the entire root zone in the laboratory. Atrazine was strongly adsorbed within the upper 30 cm of soil and most of the atrazine recovered from the soil during the growing season was in that depth. The estimated half-life for atrazine was 32 d in topsoil to 83 d in subsoil. Atrazine concentration within the root zone decreased from 0.44 kg ai. ha(-1) 2 days after application (DAA) to 0.1 kg a.i. ha(-1) 26 DAA. Negligible amounts of atrazine (approximately 5 microg kg(-1)) were detected below the 60-cm soil depth by 64 DAA. Most of the decrease in atrazine concentration in the root zone over time was attributed to degradation. In contrast, all applied bromide had leached past the 60-cm soil depth during the same time interval.  相似文献   

12.
Due to the increasing concern about the appearance of glyphosate [N-(phosphonomethyl)glycine] and its major metabolite aminomethylphosphonic acid (AMPA) in natural waters, batch laboratory and lysimeter transport studies were performed to assess the potential for leaching of the compounds in two agricultural soils. Unlabeled and 14C-labeled glyphosate were added at a rate corresponding to 1.54 kg a.i. ha(-1) on undisturbed sand and clay columns. Leachate was sampled weekly during a period of 748 d for analyses of glyphosate, AMPA, total 14C, and particle-bound residues. Topsoil and subsoil samples were used for determination of glyphosate adsorption, glyphosate degradation, and formation of AMPA and its degradation. The influence of adsorption on glyphosate degradation was confirmed, giving very slow degradation rate in the clay soil (half-life 110-151 d). The kinetics of AMPA residues suggest that although AMPA is always more persistent than glyphosate when formed from glyphosate, its degradation rate can be faster than that of glyphosate. The kinetics also suggest that apart from glyphosate being transformed to AMPA, the sarcosine pathway can be just as significant. The long persistence of glyphosate was also confirmed in the lysimeter study, where glyphosate+AMPA residues constituted 59% of the initial amount of glyphosate added to the clay soil 748 d after application. Despite large amounts of precipitation in the autumn and winter after application, however, these residues were mainly located in the topsoil, and only 0.009 and 0.019% of the initial amount of glyphosate added leached during the whole study period in the sand and clay, respectively. No leaching ofAMPA occurred in the sand, whereas 0.03 g ha(-1) leached in the clay soil.  相似文献   

13.
Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.  相似文献   

14.
Application of organic manure (OM) amendments and nitrogen fertilizers can affect the sorption and movement of pesticides in soil. This study summarizes the sorption and leaching of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl) acetamide] in soils after cow (Bos taurus) manure (2.5 and 5.0%) and urea (60 and 120 kg N ha(-1)) amendments in batch and column experiments. Both cow manure and urea applications increased metolachlor sorption in soils. The values of the Freundlich adsorption parameter K(r)(1/n) for treatments T0, T1 (OM), and T2 (OM) were 2.31, 3.32, and 3.96 in Soil 1; 2.02, 2.77, and 3.32 in Soil 2; and 1.10, 1.46, and 2.02 in Soil 3, respectively. Similarly, K(f)(1/n) values for treatment T1 (urea) and T2 (urea) were 2.37 and 2.84 in Soil 1; 2.16 and 2.83 in Soil 2; and 1.50 and 1.70 in Soil 3, respectively. Column leaching studies using Soil 1 indicated that OM application drastically reduced the metolachlor leaching losses from 50% (natural soil) to < 1.0% (5.0% OM amendment). Likewise, urea application also decreased metolachlor mobility and leaching losses in columns treated with 60 and 120 kg N ha(-1) urea were 33 and 20%, respectively. The reduction in the metolachlor leaching losses was achieved through the increase in the sorption capability of the OM- and urea-amended soil. Therefore, coapplication of metolachlor with cow manure or urea fertilizers will not enhance metolachlor mobility and reduces metolachlor leaching losses in low-organic-matter soil.  相似文献   

15.
Understanding plant N uptake dynamics is critical for increasing fertilizer N uptake efficiency (FUE) and minimize the risk of N leaching. The objective of this research was to determine the effect of residence time of N fertilizer on N uptake and FUE of sweet corn. Plants were grown in 25 L columns during the fall and spring to mimic short-term N uptake dynamics. Nitrogen was applied either 1, 3, or 7 d before a weekly leaching event, using KNO3 solution (total of 393 kg N ha(-1)). Residence times (tR) were tR-1, tR-3, and tR-7 d before weekly removal of residual soil N. Plant N uptake was calculated by comparing weekly N recovery from planted with non-planted columns. During the fall, N uptake values at 70 d after emergence were 59, 73, and 126 kg N ha(-1). During the spring, corresponding values were 54, 108, and 159 kg N ha(-1). A linear response of plant growth and yield to the tR was observed under cooler conditions, whereas a quadratic response occurred under warmer conditions. There was correlation between root length density and yield. It is concluded that increasing N fertilizer residence time, which is indicative of better irrigation practices, enhanced overall sweet corn growth, yield, N uptake, and FUE, consequently reduced the risk of N being leached below the root zone before complete N uptake.  相似文献   

16.
Irrigation effects on pesticide mobility have been studied, but few direct comparisons of pesticide mobility or persistence have been conducted on turfgrass versus bare soil. The interaction of irrigation practices and the presence of turfgrass on the mobility and dissipation of mefenoxam [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alanine methyl ester] and propiconazole (1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole) was studied. Sampling cylinders (20-cm diam.) were placed in either creeping bentgrass [Agrostis stolonifera L. var. palustris (Huds.) Farw.] or bare soil. Mefenoxam was applied at 770 g a.i. ha(-1) and propiconazole was applied at 1540 g a.i. ha(-1) on 14 June 1999. Sampling cylinders were removed 2 h after treatment and 4,8,16, 32, and 64 days after treatment (DAT) and the cores were sectioned by depth. Dissipation of mefenoxam was rapid, regardless of the amount of surface organic matter or irrigation. The half-life (t1/2) of mefenoxam was 5 to 6 d in turf and 7 to 8 d in bare soil. Most mefenoxam residues found in soil under turfgrass were in the 0- to 1-cm section at 0, 4, and 8 DAT. Residues were found in the 15- to 30-cm section at 4, 8, 16, 32, and 64 DAT, regardless of turf cover or irrigation. The t1/2 of propiconazole was 12 to 15 d in turfgrass and 29 d in bare soil. Little movement of propiconazole was observed in either bare soil or turf.  相似文献   

17.
Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.  相似文献   

18.
Excessive N and water use in agriculture causes environmental degradation and can potentially jeopardize the sustainability of the system. A field study was conducted from 2000 to 2002 to study the effects of four N treatments (0, 100, 200, and 300 kg N ha(-1) per crop) on a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system under 70 +/- 15% field capacity in the North China Plain (NCP). The root zone water quality model (RZWQM), with the crop estimation through resource and environment synthesis (CERES) plant growth modules incorporated, was evaluated for its simulation of crop production, soil water, and N leaching in the double cropping system. Soil water content, biomass, and grain yield were better simulated with normalized root mean square errors (NRMSE, RMSE divided by mean observed value) from 0.11 to 0.15 than soil NO(3)-N and plant N uptake that had NRMSE from 0.19 to 0.43 across these treatments. The long-term simulation with historical weather data showed that, at 200 kg N ha(-1) per crop application rate, auto-irrigation triggered at 50% of the field capacity and recharged to 60% field capacity in the 0- to 50-cm soil profile were adequate for obtaining acceptable yield levels in this intensified double cropping system. Results also showed potential savings of more than 30% of the current N application rates per crop from 300 to 200 kg N ha(-1), which could reduce about 60% of the N leaching without compromising crop yields.  相似文献   

19.
Phosphorus leaching in manure-amended Atlantic Coastal Plain soils   总被引:2,自引:0,他引:2  
Targeting the sources of phosphorus (P) and transport pathways of drainage from agricultural land will assist in the reduction of P loading to surface waters. Our research investigated the vertical movement of P from dairy manure and broiler litter through four Atlantic Coastal Plain soils. A randomized split-plot design with two main-plot tillage treatments (no tillage [NT] and chisel tillage [CH]) and five manure P rate split-plot treatments was used at each location. The split-plot P rates were 0, 100, 200, 300, and 400 kg P ha(-1) yr(-1). Four consecutive years of manure application began at all sites 5 yr before sampling. Soils were sampled to a depth of 150 cm from each split plot in seven depth increments and analyzed for soil test phosphorus (STP), water-extractable soil phosphorus (WSP), and degree of phosphorus saturation (DPS). The DPS of the 0- to 15-cm depths confirmed that at the 100 kg P ha(-1) yr(-1) application rate, all sites exceeded the threshold for P saturation (30%). At depths greater than 30 cm, DPS was typically below the 30% saturation threshold. The DPS change points ranged from 25 to 34% for the 0- to 90-cm depths. Our research concluded that the risk of P leaching through the matrix of the Atlantic Coastal Plain soils studied was not high; however, P leaching via macropore bypass may contribute to P loss from these soils.  相似文献   

20.
The leaching of colloidal phosphorus (P(coll)) contributes to P losses from agricultural soils. In an irrigation experiment with undisturbed soil columns, we investigated whether the accumulation of P in soils due to excess P additions enhances the leaching of colloids and P(coll) from sandy soils. Furthermore, we hypothesized that large concentrations of P(coll) occur at the onset of leaching events and that P(coll) mobilized from topsoils is retained in subsoils. Soil columns of different P saturation and depth (0-25 and 0-40 cm) were collected at a former disposal site for liquid manure and at the Thyrow fertilization experiment in northeastern Germany. Concentrations of total dissolved P, P(coll), Fe(coll), Al(coll), optical density, zeta potential, pH, and electrical conductivity of the leachates were determined. Colloidal P concentrations ranged from 0.46 to 10 micromol L(-1) and contributed between 1 and 37% to total P leaching. Large P(coll) concentrations leached from the P-rich soil of the manure disposal site were rather related to a large P-content of colloids than to the mobilization of additional colloids. Concentrations of colloids and P(coll) in leachates from P-poor and P-rich columns from Thyrow did not differ significantly. In contrast, accumulation of P in the Werbellin and the Thyrow soil consistently increased dissolved P concentrations to maximum values as high as 300 micromol L(-1). We observed no first-flush of colloids and P(coll) at the beginning of the leaching event. Concentrations of P(coll) leached from 40-cm soil columns were not smaller than those leached from 25-cm columns. Our results illustrate that an accumulation of P in sandy soils does not necessarily lead to an enhanced leaching of colloids and P(coll), because a multitude of factors independent from the P status of soils control the mobility of colloids. In contrast, P accumulation generally increases dissolved P concentrations in noncalcareous soils due to the saturation of the P sorption capacity. This indicates that leaching of dissolved P might be a more widespread environmental problem in areas with P-saturated sandy soils than leaching of P(coll).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号