首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Environmentally sound management of the use of composts in agriculture relies on matching the rate of release of available N from compost-amended soils to the crop demand. To develop such management it is necessary to (i) characterize the properties of composts that control their rates of decomposition and release of N and (ii) determine the optimal amount of composts that should be applied annually to wheat (Triticum aestivum L.). Carbon and N mineralization were measured under controlled conditions to determine compost decomposition rate parameters, and the NCSOIL model was used to derive the organic wastes parameters that control the rates of N and C transformations in the soil. We also characterized the effect of a drying period to estimate the effects of the dry season on C and N dynamics in the soil. The optimized compost parameters were then used to predict mineral N concentration dynamics in a soil-wheat system after successive annual applications of compost. Sewage sludge compost (SSC) and cattle manure compost (CMC) mineralization characteristics showed similar partitioning into two components of differing ease of decomposition. The labile component accounted for 16 to 20% of total C and 11 to 14% of total N, and it decomposed at a rate of 2.4 x 10(-2) d(-1), whereas the resistant pool had a decomposition rate constant of 1.2 to 1.4 x 10(-4) d(-1). The main differences between the two composts resulted from their total C and N and inorganic N contents, which were determined analytically. The long-term effect of a drying period on C and N mineralization was negligible. Use of these optimization results in a simulation of compost mineralization under a wheat crop, with a modified plant-effect version of the NCSOIL model, enabled us to evaluate the effects of the following factors on the C and N dynamics in soil: (i) soil temperature, (ii) mineral N uptake by plants, and (iii) release of very labile organic C in root exudates. This labile organic C enhanced N immobilization following application, and so decreased the N available for uptake by plants.  相似文献   

2.
The effects of addition of a range of organic amendments (biosolids, spent mushroom compost, green waste compost and green waste-derived biochar), at two rates, on some key chemical, physical and microbial properties of bauxite-processing residue sand were studied in a laboratory incubation study. Levels of exchangeable cations were not greatly affected by additions of amendments but extractable P was increased significantly by mushroom and green waste composts and massively (i.e. from 11.8 to 966 mg P kg?1) by biosolids applications. Levels of extractable NO3?–N were also greatly elevated by biosolids additions and there was a concomitant decrease in pH. Addition of all amendments decreased bulk density and increased mesoporosity, available water holding capacity and water retention at field capacity (?10 kPa), with the higher rate having a greater effect. Addition of biosolids, mushroom compost and green waste compost all increased soluble organic C, microbial biomass C, basal respiration and the activities of β-glucosidase, L-asparaginase and alkali phosphatase enzymes. The germination index of watercress grown in the materials was greatly reduced by biosolids application and this was attributed to the combined effects of a high EC and high concentrations of extractable P and NO3?. It was concluded that the increases in water storage and retention and microbial activity induced by additions of the composts is likely to improve the properties of bauxite-processing residue sand as a growth medium but that allowing time for soluble salts, originating from the organic amendments, to leach out may be an important consideration before sowing seeds.  相似文献   

3.
Recent adoption of national rules for organic crop production have stimulated greater interest in meeting crop N needs using manures, composts, and other organic materials. This study was designed to provide data to support Extension recommendations for organic amendments. Specifically, our objectives were to (i) measure decomposition and N released from fresh and composted amendments and (ii) evaluate the performance of the model DECOMPOSITION, a relatively simple N mineralization/immobilization model, as a predictor of N availability. Amendment samples were aerobically incubated in moist soil in the laboratory at 22 degrees C for 70 d to determine decomposition and plant-available nitrogen (PAN) (n = 44), and they were applied preplant to a sweet corn crop to determine PAN via fertilizer N equivalency (n = 37). Well-composted materials (n = 14) had a single decomposition rate, averaging 0.003 d(-1). For uncomposted materials, decomposition was rapid (>0.01 d(-1)) for the first 10 to 30 d. The laboratory incubation and the full-season PAN determination in the field gave similar estimates of PAN across amendments. The linear regression equation for lab PAN vs. field PAN had a slope not different from one and a y-intercept not different than zero. Much of the PAN released from amendments was recovered in the first 30 d. Field and laboratory measurements of PAN were strongly related to PAN estimated by DECOMPOSITION (r(2) > 0.7). Modeled PAN values were typically higher than observed PAN, particularly for amendments exhibiting high initial NH(4)-N concentrations or rapid decomposition. Based on our findings, we recommend that guidance publications for manure and compost utilization include short-term (28-d) decomposition and PAN estimates that can be useful to both modelers and growers.  相似文献   

4.
Extracted organic C and microbial biomass were evaluated as stability parameters in 3 different ligno-cellulosic waste composts. Organic C was extracted by both water and alkali and further separated in humic-like carbon (HLC) and nonhumic carbon (NHC). Conventional humification parameters, such as humification index and degree of humification were calculated from NHC and HLC. Microbial biomass carbon (B(C)) was determined as an indicator of the degree of biochemical transformation, whereas ninhydrin reactive N (B(NIN)) was measured to obtain the stability parameter B(NIN)/N(TOT) (N(TOT), total N). The water-extracted organic C did not provide reliable information on the transformations underwent by the ligno-cellulosic wastes during composting, since its content remained almost unaltered during the whole process. In contrast, parameters based on the alkali-extracted organic C and microbial biomass clearly reflected organic matter (OM) changes during the process. There was an increase in the net amount of HLC in the alkali extracts throughout composting, especially in the first 7 to 12 wk of the process, as well as a relative enrichment of HLC with respect to NHC. Values of humification index and degree of humification in end products were consistent with an adequate level of compost stability. The stability parameter B(NIN)/N(TOT) showed to be a reliable indicator of stability in ligno-cellulosic wastes. Parameters based on the alkali-extracted C and microbial biomass clearly reflected the transformation of the OM during composting and can be used as stability parameters in ligno-cellulosic waste composts.  相似文献   

5.
The objective of this study was to quantify C and N mineralization rates from a range of organic amendments that differed in their total C and N contents and C quality, to gain a better understanding of their influence on the soil N cycle. A pelletized poultry manure (PP), two green waste-based composts (GWCa, GWCb), a straw-based compost (SBC), and a vermi-cast (VER) were incubated in a coarse-textured soil at 15 degrees C for 142 d. The C quality of each amendment was determined by chemical analysis and by 13C nuclear magnetic resonance (NMR). Carbon dioxide (CO2-C) evolution was determined using alkali traps. Gross N mineralization rates were calculated by 15N isotopic pool dilution. The CO2-C evolution rates and gross N mineralization rates were generally higher in amended soils than in the control soil. With the exception of GWCb all amendments released inorganic N at concentrations that would be high enough to warrant a reduction in inorganic N fertilizer application rates. The amount of N released from PP was high indicating that application rates should be reduced, or alternative amendments used, to minimize leaching losses in regions where ground water quality is of concern. There was a highly significant relationship between CO2-C evolution and gross N mineralization (R2= 0.95). Some of the chemically determined C quality parameters had significant relationships (p < 0.05) with both the cumulative amounts of C and N evolved. However, we found no significant relationships between 13C NMR spectral groupings, or their ratios, and either the CO2-C evolved or gross N mineralized from the amendments.  相似文献   

6.
In situ incubation methods may help provide site-specific estimates of N mineralization from land-applied wastes. However, there are concerns about the reliability of the data generated by the various methods due to containment artifacts. We amended a sandy soil with either poultry manure, biosolids, or yard-waste compost and incubated the mixtures using four in situ methods (buried bags, covered cylinders, standard resin traps, and "new" soil-resin traps) and a conventional laboratory technique in plastic bags. Each incubation device was destructively sampled at 45-d intervals for 180 d and net N mineralization was determined by measuring the amount of inorganic N that accumulated in the soil or soil plus resin traps. Containment effects were evaluated by comparing water content of the containerized soil to a field-reference soil column. In situ incubation methods provided reasonable estimates of short-term (< 45 d) N mineralization, but long-term (> 45 d) mineralization data were not accurate due to a variety of problems specific to each technique. Buried bags and covered cylinders did not retain mineralized N due to water movement into and out of the containers. Neither resin method captured all of the mineralized N that leached through the soil columns, but the new soil-resin trap method tracked field soil water content better than all other in situ methods evaluated. With further refinement and validation, the new soil-resin trap method may be a useful in situ incubation technique for measuring net N mineralization rates of organic soil amendments.  相似文献   

7.
Perennial forages may be ideally suited for fertilization with slow N release amendments such as composts, but difficulties in predicting N supply from composts have limited their routine use in forage production. A field study was conducted to compare the yield and protein content of a binary legume-grass forage mixture and a grass monocrop cut twice annually, when fertilized with diverse composts. In all three years from 1998-2000, timothy (Phleum pratense L.)-red clover (Trifolium pratense L.) and timothy swards were fertilized with ammonium nitrate (AN) at up to 150 and 300 kg N ha(-1) yr(-1), respectively. Organic amendments, applied at up to 600 kg N ha(-1) yr(-1) in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC), or sewage sludge (SSLC), plus liquid dairy manure (DM). Treatments DM at 150 kg N ha(-1) yr(-1) and CSC at 600 kg N ha(-1) yr(-1) produced cumulative timothy yields matching those obtained for inorganic fertilizer. Apparent nitrogen recovery (ANR) ranged from 0.65% (SSLC) to 15.1% (DMC) for composts, compared with 29.4% (DM) and 36.5% (AN). The legume component (approximately 30%) of the binary mixture acted as an effective "N buffer" maintaining forage yield and protein content consistently higher, and within a narrower range, across all treatments. Integrating compost utilization into livestock systems that use legume-grass mixtures may reduce the risk of large excesses or deficits of N, moderate against potential losses in crop yield and quality, and by accommodating lower application rates of composts, reduce soil P and K accumulation.  相似文献   

8.
Use of organic by-products as soil amendments in agricultural production exemplifies a strategy for converting wastes to resources. The overall objective of this research was to evaluate the short- and intermediate-term effects of repeatedly amending sandy soil with paper mill residuals (PMR) and composted PMR in a vegetable rotation in Wisconsin's Central Sands. Specifically, we investigated the effects of PMR and composted PMR on total soil C and related these to changes in water-holding capacity and plant-available water (PAW). Amendment effects on irrigation requirements were estimated with a simple soil water balance model. The experimental design was replicated five times as a randomized complete block with four organic amendments: raw PMR, PMR composted alone (PMRC), PMR composted with bark (PMRB), and peat applied at two rates and a non-amended control. All amended treatments significantly increased total soil C relative to the nonamended control following applications in 1998 and 1999. One year following the second serial amendment, all PMR treatments increased PAW by 5 to 45% relative to the control. There was a significant positive linear relationship between total soil C and PAW. All amended treatments reduced the average amount of irrigation water required for potato production by 4 to 30% and the number of irrigation events by 10 to 90%. There was a clear trend of greater reduction in irrigation requirements with more carbon added. The cumulative effects of repeated additions of PMRB suggest that certain composts might sustain elevated PAW and reduce irrigation requirements beyond one year.  相似文献   

9.
Nitrogen mineralization from organic residues: research opportunities   总被引:1,自引:0,他引:1  
Research on nitrogen (N) mineralization from organic residues is important to understand N cycling in soils. Here we review research on factors controlling net N mineralization as well as research on laboratory and field modeling efforts, with the objective of highlighting areas with opportunities for additional research. Among the factors controlling net N mineralization are organic composition of the residue, soil temperature and water content, drying and rewetting events, and soil characteristics. Because C to N ratio of the residue cannot explain all the variability observed in N mineralization among residues, considerable effort has been dedicated to the identification of specific compounds that play critical roles in N mineralization. Spectroscopic techniques are promising tools to further identify these compounds. Many studies have evaluated the effect of temperature and soil water content on N mineralization, but most have concentrated on mineralization from soil organic matter, not from organic residues. Additional work should be conducted with different organic residues, paying particular attention to the interaction between soil temperature and water content. One- and two-pool exponential models have been used to model N mineralization under laboratory conditions, but some drawbacks make it difficult to identify definite pools of mineralizable N. Fixing rate constants has been used as a way to eliminate some of these drawbacks when modeling N mineralization from soil organic matter, and may be useful for modeling N mineralization from organic residues. Additional work with more complex simulation models is needed to simulate both gross N mineralization and immobilization to better estimate net N mineralized from organic residues.  相似文献   

10.
The positive impact of elevated atmospheric CO(2) concentration on crop biomass production suggests more carbon inputs to soil. Further study on the effect of elevated CO(2) on soil carbon and nitrogen dynamics is key to understanding the potential for long-term carbon storage in soil. Soil samples (0- to 5-, 5- to 10-, and 10- to 20-cm depths) were collected after 2 yr of grain sorghum [Sorghum bicolor (L.) Moench.] production under two atmospheric CO(2) levels: (370 [ambient] and 550 muL L(-1) [free-air CO(2) enrichment; FACE]) and two water treatments (ample water and limited water) on a Trix clay loam (fine, loamy, mixed [calcareous], hyperthermic Typic Torrifluvents) at Maricopa, AZ. In addition to assessing treatment effects on soil organic C and total N, potential C and N mineralization and C turnover were determined in a 60-d laboratory incubation study. After 2 yr of FACE, soil C and N were significantly increased at all soil depths. Water regime had no effect on these measures. Increased total N in the soil was associated with reduced N mineralization under FACE. Results indicated that potential C turnover was reduced under water deficit conditions at the top soil depth. Carbon turnover was not affected under FACE, implying that the observed increase in soil C with elevated CO(2) may be stable relative to ambient CO(2) conditions. Results suggest that, over the short-term, a small increase in soil C storage could occur under elevated atmospheric CO(2) conditions in sorghum production systems with differing water regimes.  相似文献   

11.
To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30 degrees C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (N ava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH(4) production (P CH4). There was a significant relationship between decomposable C and available N (N ava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fe total) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: P CH4 = 1.593N(ava) - 2.460Fe total/1000 (each unit was mg kg(-1) soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).  相似文献   

12.
Seventeen different wastewater sludges were characterized using both chemical and organic matter fractionation methods (water extraction, Van Soest method, and acid hydrolysis) and 6-mo incubation studies to assess their decomposition in soil. Simple correlation and multiple factor analysis (MFA) were then performed to establish relationships between composition and C and N mineralization of sludges. Carbon and N concentrations covered a wide range of values, but organic carbon (C(o)) to organic nitrogen (N(o)) ratios were relatively low (from 5 to 19). Carbon and N were mainly distributed in the most soluble fractions of the Van Soest method and in the water-insoluble fraction at 100 degrees C. Carbon mineralization varied from 180 to 661 g C kg(-1) organic C added during the 168-d incubation. The addition of sludges led to different inorganic N dynamics: from -3.3 to +120.0 g N kg(-1) sludge organic C mineralized after the 168-d incubation. Fractionation studies showed that the most discriminating method was acid hydrolysis. Carbon mineralization was linked with the proportion of sludge N and C present in the lignin-like fraction (r = -0.68 and -0.65, respectively). Significant relationships were established between N mineralization and N(o) to C(o) ratio (0.88 < r < 0.95) and the C(o) to N(o) ratio of sludges, the C to N ratio of the soluble fraction obtained by the Van Soest method, the water-soluble fraction at 100 degrees C, and the C and N present in the acid-hydrolyzable fraction. Finally, multiple factor analysis also enabled establishing a sludge typology using five clusters based on composition and mineralization characteristics.  相似文献   

13.
Increasing land applications of biosolid wastes as soil amendments have raised concerns about potential toxic effects of associated metals on the environment. This study investigated the ability of biosolid colloids to transport metals associated with organic waste amendments through subsurface soil environments with leaching experiments involving undisturbed soil monoliths. Biosolid colloids were fractionated from a lime-stabilized, an aerobically digested, and a poultry manure organic waste and applied onto the monoliths at a rate of 0.7 cm/h. Eluents were monitored for Cu, Zn, Pb, and colloid concentrations over 16 to 24 pore volumes of leaching. Mass-balance calculations indicated significantly higher (up to 77 times) metal elutions in association with the biosolid colloids in both total and soluble fractions over the control treatments. Eluted metal loads varied with metal, colloid, and soil type, following the sequences Zn = Cu > Pb, and ADB > PMB > LSB colloids. Colloid and metal elution was enhanced by decreasing pH and colloid size, and increasing soil macroporosity and organic matter content. Breakthrough curves were mostly irregular, showing several maxima and minima as a result of preferential macropore flow and multiple clogging and flushing cycles. Soil- and colloid-metal sorption affinities were not reliable predictors of metal attenuation/elution loads, underscoring the dynamic nature of transport processes. The findings demonstrate the important role of biosolid colloids as contaminant carriers and the significant risk they pose, if unaccounted, for soil and ground water contamination in areas receiving heavy applications of biosolid waste amendments.  相似文献   

14.
Organic soil improvers are mainly used for their potential for preventing soil losses. This study investigates the physicochemical properties of six different organic soil improvers and their effects on the properties and productivity of reconstituted anthropic soils during short-term application compared to farm manure. Treatment materials were obtained from Tunisian agricultural waste composts (almond shell (AS), sesame bark (SB), olive cake (OC), olive mill wastewater sludge (OMWS) and poultry manure (PM)) as well as mixtures of compost-manure (CM). The characterization of soil conditioners shows that (i) nitrogen contents are higher in olive wastes and PM-based composts; (ii) carbon/nitrogen ratio (C/N) and the organic matter (OM) contents are in the ranges of 14.1-29.7 and 19.3-64.5%, respectively; (iii) the electrical conductivity (EC) is higher in manure (M) and compost-manure mixture (4.8-10.4 mS/cm) and (iv) pH values are alkaline (8.2-8.8). Treatments were applied as components of a reconstituted soil at a rate of 14 kg/m2. Except for the manures, the mixtures of soil and treatment material (in a ratio of 600 L/28 kg) were placed in metallic basins to form the reconstituted anthropic soil. Plot areas of 2 m2 were used for each treatment and 2 × 2 m2 for the control. An assessment of the geochemical properties of soils during the cultivation period reveals variations in soil organic matter (SOM) contents as well as pH and EC values. Soil productivity is determined by quantitative and qualitative comparison of tomato fruits obtained from each plot amended with manure-treated soil.  相似文献   

15.
Influence of biochar on nitrogen fractions in a coastal plain soil   总被引:3,自引:0,他引:3  
Interest in the use of biochar from pyrolysis of biomass to sequester C and improve soil productivity has increased; however, variability in physical and chemical characteristics raises concerns about effects on soil processes. Of particular concern is the effect of biochar on soil N dynamics. The effect of biochar on N dynamics was evaluated in a Norfolk loamy sand with and without NHNO. High-temperature (HT) (≥500°C) and low-temperature (LT) (≤400°C) biochars from peanut hull ( L.), pecan shell ( Wangenh. K. Koch), poultry litter (), and switchgrass ( L.) and a fast pyrolysis hardwood biochar (450-600°C) were evaluated. Changes in inorganic, mineralizable, resistant, and recalcitrant N fractions were determined after a 127-d incubation that included four leaching events. After 127 d, little evidence of increased inorganic N retention was found for any biochar treatments. The mineralizable N fraction did not increase, indicating that biochar addition did not stimulate microbial biomass. Decreases in the resistant N fraction were associated with the high pH and high ash biochars. Unidentified losses of N were observed with HT pecan shell, HT peanut hull, and HT and LT poultry litter biochars that had high pH and ash contents. Volatilization of N as NH in the presence of these biochars was confirmed in a separate short-term laboratory experiment. The observed responses to different biochars illustrate the need to characterize biochar quality and match it to soil type and land use.  相似文献   

16.
17.
Prediction of phosphorus (P) availability from soil-applied composts and manure is important for agronomic and environmental reasons. This study utilized chemical properties of eight composted and two non-composted beef cattle (Bos taurus) manures to predict cumulative phosphorus uptake (CPU) during a 363-d controlled environment chamber bioassay. Ten growth cycles of canola (Brassica napus L.) were raised in pots containing 2 kg of a Dark Brown Chernozemic clay loam soil (fine-loamy, mixed, Typic Haploboroll) mixed with 0.04 kg of the amendments. Inorganic P fertilizer (KH2PO4) and an unamended control were included for comparison. All treatments received a nutrient solution containing an adequate supply of all essential nutrients, except P, which was supplied by the amendments. Cumulative P uptake was similar for composted (74 mg kg-1 soil) and non-composted manures (60 mg kg-1 soil) and for the latter and the fertilizer (40 mg kg-1 soil). However, the CPU was significantly higher for organic amendments than the control (24 mg kg-1 soil) and for composted manure than the fertilizer. Apparent phosphorus recovery (APR) from composted manure (24%) was significantly lower than that from non-composted manure (33%), but there was no significant difference in APR between the organic amendments and the fertilizer (27%). Partial least squares (PLS) regression indicated that only two parameters [total water-extractable phosphorus (TPH2O) and total phosphorus (TP) concentration of amendments] were adequate to model amendment-derived cumulative phosphorus uptake (ACPU), explaining 81% of the variation in ACPU. These results suggest that P availability from soil-applied composted and non-composted manures can be adequately predicted from a few simple amendment chemical measurements. Accurate prediction of P availability and plant P recovery may help tailor manure and compost applications to plant needs and minimize the buildup of bioavailable P, which can contribute to eutrophication of sensitive aquatic systems.  相似文献   

18.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature.  相似文献   

19.
This exploratory laboratory study was undertaken to develop and test an in situ bioremediation system intended to point the way toward a possible field application. The proposed method uses a water table management (WTM) system to deliver nutrients or other amendments to subsoil microorganisms for biostimulation and subsequent biodegradation of pollutants in the saturated and unsaturated zones of the soil. The study was carried out on packed soil columns and bioremediation of residual fertilizer nitrate was attempted. Different levels of organic carbon supplement (glucose C) were introduced into these columns via subirrigation in order to supplement the readily available organic carbon levels in the soil. The study was carried out in two experimental setups. The first setup investigated (i) the effect of addition of a high (970 mg L(-1)) and a low (120 mg L(-1)) glucose C level and (ii) the efficacy of using the subirrigation system as a method for nutrient delivery in bioremediation of leached nitrate. This setup was monitored with time, depth, and with reference to the nitrate residue in the soil solution. Leached nitrate was denitrified to less than 10 mg L(-1) nitrate N at both glucose levels. The second setup investigated the effect of a range of low levels of glucose C on nitrate decontamination, soil pH, and total microbial count in order to find out an optimal glucose C level that reduced the most nitrate and maintained the pH homeostasis of soil.  相似文献   

20.
Many municipalities have examined composting as an alternative to landfilling for the management of organic solid waste materials. Ultimately these materials will be land-applied and therefore some knowledge of nutrient availability will be necessary to optimize crop yield and minimize environmental risk. Field studies were conducted in 1993 and 1994 on a silt loam and a loamy sand soil in Wisconsin to determine the effect of municipal solid waste compost (MSWC) on corn (Zea mays L.) yield, plant nutrient concentration, and soil nitrate N content. Municipal solid waste composts with ages of 7, 36, and 270 d were applied at rates of 22.5, 45, and 90 Mg ha(-1) to small plots. Rates of commercial nitrogen (N) fertilizer, ranging from 0 to 179 kg N ha(-1), were applied to separate plots to determine the N availability from the MSWC. Treatments were applied in the spring and incorporated before planting corn. The 270-d MSWC increased corn whole-plant dry matter and grain yield at each location in both years above the 7- and 36-d MSWC. Rate of MSWC only affected grain yield at the loamy sand site in 1994. Municipal solid waste compost had minimal effect on the levels of plant nutrients in the whole-plant tissue measured at physiological maturity. Nitrate N measured in the top 90 cm of soil was higher throughout the growing season in treatments receiving recommended N fertilizer when compared with any of the MSWC treatments. It was estimated that 6 to 17% of the total N in the 270-d MSWC became available in the first year. The land-application of mature MSWC at the tested rates would be an agronomically and environmentally admissible practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号