首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
偶氮染料是总量最大、种类最多的合成染料,其降解处理通常采用厌氧-好氧技术。厌氧过程可实现偶氮染料的还原,好氧过程则完成还原产物芳香胺的去除。厌氧过程受偶氮染料结构和浓度、底物的种类和浓度、其他电子受体、氧化还原介体、温度和DO等环境因素以及水力停留时间的影响。好氧条件下芳香胺的降解过程受其自身的结构、浓度、外加碳源以及降解体系等影响,且自氧化过程影响了芳香胺的生物降解。在实际废水处理中应创造良好的条件提高偶氮染料的厌氧一好氧生物降解效率。  相似文献   

2.
In this work, Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites were prepared by the ultrasonic dispersion and liquid boiling method. In succession, they were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Acid red B as a model dye compound was degraded under solar light irradiation to evaluate the photocatalytic activities of the Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites. We found that the photocatalytic activity of ZnO–TiO2 composite can be enhanced by adding an appropriate amount of Er3+:YAlO3. We reviewed influencing factors, such as Er3+:YAlO3 content, heat-treated temperature and heat-treated time on the photocatalytic activity of the Er3+:YAlO3/ZnO–TiO2 composites. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+:YAlO3/ZnO–TiO2 amount and solution acidity on the photocatalytic degradation of acid red B dye in aqueous solution were investigated in detail. Simultaneously, the degradation and comparison of other dyes such as methyl orange (MO), rhodamine B (RM-B), azo fuchsine (AF), congo red (CG-R) and methyl blue (MB) were also reviewed. In addition, we attempted to explore both the principle of possible excitation of Er3+:YAlO3/ZnO–TiO2 under solar light irradiation and the mechanism of photocatalytic degradation.  相似文献   

3.
甲基橙是一种较难降解的有机苯环偶氮染料之一,研究其降解性能对其他染料废水体系的降解研究具有普遍参考价值。通过研究Fenton试剂降解甲基橙过程中的H202浓度、Fe2+浓度、反应时间和反应体系pH值对甲基橙降解的影响,确定其最佳降解工艺条件为:当甲基橙浓度为20mg/L、pH值为3、Fe2+浓度为1.5mmol/L、H2O2为32mmol/L时,降解率达到最大值(98.95%)。  相似文献   

4.
The biosorption of the heavy metals Cu2+ and Zn2+ by dried marine green macroalga (Chaetomorpha linum) was investigated. The biosorption capacities of the dried alga for copper and zinc were studied at different solution pH values (2–6), different algal particle sizes (100–800 μm) and different initial metal solution concentrations (0.5–10 mM). An optimum pH value of 5 was found suitable for both metal ions biosorption for both metal ions. At the optimum particle size (100–315 μm), biosorbent dosage (20 g/l) and initial solution pH (pH 5), the dried alga produced maximum copper and zinc uptakes values (qmax) of 1.46 and 1.97 mmol/g respectively (according to the Langmuir model). The kinetic data obtained at different initial metal concentrations indicated that the biosorption rate was fast and most of the process was completed within 120 min. This study illustrated an alternative technique for the management of unwanted biological materials using processed algal material. C. linum is one of the fast-growing marine algae in the lake of Tunis and could be utilized as a biosorbent for the treatment of Cu2+ and Zn2+ contaminated wastewater streams.  相似文献   

5.
The sulphur dioxide and nitrogen oxides emissions from all sources in Alberta, Canada, during 1982 amounted to 488,297 and 353,511 tonnes, respectively. During this year deposition of wet sulphate from all stations in the province, 8 kg ha–1 yr–1, compares well with the five-year average (1978–1982) value of 10 kg ha–1 yr–1. These measurements are about one-half of the wet sulphate deposition criteria of 20 kg ha–1 yr–1 established for protecting the moderately sensitive aquatic ecosystem in eastern Canada. Due to dry, cold, continental climate conditions of Alberta, dry sulphate or sulphur deposition is equally or more important than wet deposition. No effects of the long-range transport of atmospheric pollutants (LRTAP) on the ecosystems in Alberta have been observed to date. Atmospheric deposition target loadings of SO4 –2, NO3 , and H+ for Alberta and western Canadian environmental conditions should be developed to protect the highly sensitive ecosystems. Some future research and monitoring priorities for Alberta and western Canada are outlined.  相似文献   

6.
Nostoc calcicola cells exposed to mercuric chloride (0.05–0.25 M), methyl mercuric chloride (0.05–0.15 M) and the fungicide ceresan (phenyl mercuric acetate; 0.05–0.20 M) showed sensitivity in the sequence: methyl mercury3) over phenyl mercuric acetate (0.51×103); inorganic mercury occupied the intermediate position with a bioconcentration factor of 1.32×103. The data infer that larger molecules of organomercurials may not be taken up by cells at the rate and extent comparable to the smaller species.  相似文献   

7.
New comprehensive numerically solved 1D and 2D absorption rate/kinetics models have been developed, for the first time, to interpret the experimental kinetic data obtained with a laminar jet apparatus for the absorption of carbon dioxide (CO2) in CO2 loaded mixed solutions of mixed amine system of methyldiethanolamine (MDEA) and monoethanolamine (MEA). Three MDEA/MEA weight ratios ranging from 27/03 to 23/07, over a concentration range of 2.316–1.996 kmol/m3 for MDEA and of 0.490–1.147 kmol/m3 for MEA were studied. The models take into account the coupling between chemical equilibrium, mass transfer, and the chemical kinetics of all possible chemical reactions involved in the CO2 reaction with MDEA/MEA solvent. The partial differential equations of the 1D model were solved by two numerical techniques; the finite difference method (FDM) based on in-house coded Barakat–Clark scheme and the finite element method (FEM) based on COMSOL software. The FEM comprehensive model was then used to solve the set of partial differential equations in the 2D cylindrical coordinate system setting. Both FDM and FEM produced very accurate results for both the 1D and 2D models, which were much better than our previously published simplified model. The reaction rate constant obtained for MEA blended into MDEA at 298–333 K was kMEA = 5.127 × 108 exp(−3373.8/T). In addition, the 2D model, for the first time, has provided the concentration profiles of all the species in both the radial and axial directions of the laminar jet, thereby enabling an understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed amines occur.  相似文献   

8.
A method for quality screening is suggested to detect volatile impurities in inorganic coagulants that are used for drinking water treatment. Static headspace gas chromatography with mass spectrometry detection (HS–GCMS) is sensitive and selective to detect volatiles in low concentrations. This study has discovered that volatile organic impurities are detectable in ferric and aluminium-based coagulants which are used for drinking water treatment. For ferric chloride, 2-propanol was detected at a level of 17–24 μg ml−1, acetone at 0.7–1.7 μg ml−1, 1,1,1-trichloroacetone at 0.02–0.04 μg ml−1, trichloromethane at 0.01–0.02 μg ml−1 and toluene at 0.01–0.12 μg ml−1. For ferric chloride sulfate, acetone was detected at a level of 0.12 μg ml−1, 1,1,1-trichloroacetone at 0.06–0.08 μg ml−1, trichloromethane at 0.13–0.23 μg ml−1, bromodichloromethane at 0.04–0.06 μg ml−1 and dibromochloromethane at 0.04–0.05 μg ml−1. For aluminium hydroxide chloride, only trichloromethane was detectable, but below the method detection limits (MDL). Although the concentrations of these impurities in commercial coagulants are low, this observation is important and should have impact on water industries for them to pay attention to the chemicals they are using for drinking water production.  相似文献   

9.
Three Egyptian industrial wastewater management programmes   总被引:1,自引:0,他引:1  
A pre-treatment programme for wastewater from factories, representing three main industrial sectors in Egypt, has been developed. The first case study was a factory producing potato-chips. Wastewater discharged from this factory was characterized by high values of BOD, SS and oil and grease (6000 mgO2 l–1, 6577 mg l–1 and 119 mg l–1 respectively). Chemical treatment using lime and lime aided by polyelectrolyte achieved good results. Residual values of BOD and SS after treatment were 97 mg l–1 and 49 mg l–1, respectively. Oil and grease concentrations were reduced by 91 percent. Treatment via activated sludge at a detention time of 4 hrs produced good quality effluent. The second case study was an automobile company, representing the metal finishing industry. Analyses of wastewater samples from the degreasing, phosphating and painting departments, as well as the end-of-pipe effluent were conducted. The end-of-pipe effluent contained high concentrations of oil and grease (366 mg l–1), phosphorous (111 mg l–1) and zinc (81 mg l–1). Chemical treatment of end-of-pipe wastewater using ferric chloride aided by lime, produced high quality effluent. The third sector was the chemical industry. For this purpose a paint factory was selected. Characteristics of raw wastewater varied widely according to the production rate. Average values of COD and BOD were 1950 mg l–1 and 683 mg l–1. Oil and grease ranged from 63 to 1624 mg l–1. Chemical treatment using ferric chloride in combination with lime at the optimum operating conditions achieved good results. Residual values after treatment of COD, BOD and oil and grease reached 120, 36 and 8.6 mg l–1, respectively. An engineering design for each case study has been prepared.  相似文献   

10.
Decolourization, degradation and detoxification of four textile dyes (Madonna Blue, Pagoda Red, Market Blue and Market Red) by four Aspergillus species was carried out. The decolourization/degradation ability of the isolates was analyzed on the fifth day using UV/Visible spectrophotometer and FTIR spectrophotometer, while detoxification of the dyes was determined using phytotoxicity test. At the initial concentration of 200 mg/L of the dyes, the percentage decolourization potential of the fungal isolates ranged between 80.89 and 86.26% for Madonna Blue, 71.38–84.76% for Market Red, 70.46–79.46% for Market Blue and 60.68–74.82% for Pagoda Red in decreasing order. Aspergillus fumigatus (8F) demonstrated consistently highest decolourization potential for all the dyes than other isolates. Decrease in percentage decolourization of the dyes was observed when the concentration of the dyes was increased gradually from 100 to 500 mg/L at 100 mg/L interval. Percentage decolourization of Pagoda Red reduced from 60.68 to 10.31%, 66.47 to 19.71%, and 74.82 to 26.19% with A. ustus (3D), A. fumigatus (3E) and A. fumigatus (8F) respectively. Degradation of the dyes moiety using FTIR spectrum showed loss of functional groups such as C=O, C=N, C=C and C–H stretch of benzene, with the formation of new functional groups such as N=O group, C≡C group and OH group of alcohol in the Madonna Blue and Pagoda Red samples treated with A. fumigatus (8F) when compared with untreated samples. Phytotoxicity study of the treated and untreated dye samples on maize germination showed the plumule and radicle length of positive control (water) to be 12.38 ± 1.20 and 5.62 ± 0.33 while untreated Madonna Blue was 6.68 ± 1.10 and 3.34 ± 0.92, A. fumigatus (3E) treated sample had 8.60 ± 0.59 and 4.32 ± 0.91 respectively. This study revealed the metabolic versatility of Aspergillus species to decolourize, degrade and detoxify textile dyes.  相似文献   

11.
Grassland management affects soil organic carbon (SOC) storage and can be used to mitigate greenhouse gas emissions. However, for a country to assess emission reductions due to grassland management, there must be an inventory method for estimating the change in SOC storage. The Intergovernmental Panel on Climate Change (IPCC) has developed a simple carbon accounting approach for this purpose, and here we derive new grassland management factors that represent the effect of changing management on carbon storage for this method. Our literature search identified 49 studies dealing with effects of management practices that either degraded or improved conditions relative to nominally managed grasslands. On average, degradation reduced SOC storage to 95% ± 0.06 and 97% ± 0.05 of carbon stored under nominal conditions in temperate and tropical regions, respectively. In contrast, improving grasslands with a single management activity enhanced SOC storage by 14% ± 0.06 and 17% ± 0.05 in temperate and tropical regions, respectively, and with an additional improvement(s), storage increased by another 11% ± 0.04. We applied the newly derived factor coefficients to analyze C sequestration potential for managed grasslands in the U.S., and found that over a 20-year period changing management could sequester from 5 to 142 Tg C yr–1 or 0.1 to 0.9 Mg C ha–1 yr–1, depending on the level of change. This analysis provides revised factor coefficients for the IPCC method that can be used to estimate impacts of management; it also provides a methodological framework for countries to derive factor coefficients specific to conditions in their region.  相似文献   

12.
Summary It has been established that the electrodes of the dialyser in a chloro-alkali plant in Eastern India release mercury beyond the permissible limits into the River Koel. Mercury in elemental form, as well as certain organo-mercury compounds, including methyl mercury, have been detected at a distance of 25 km from the discharge point. Even at a distance of 5–10 km, the mercury content of the sediment may be as high as 0.6–3.2 mg kg–1 above the value of sediment upstream of the plant. This sediment itself is contaminated, probably by battery and paint factories, etc., still further upstream. Thus, the chloro-alkali factory has contributed 60–320 times above the permissible limit (0.01 mg kg–1) of mercury release, at a distance of 5–10 km from the point of release. Furthermore, various phytoplankton and zooplankton have been contaminated, leading to very high mercury contents in certain fish. This food chain, therefore, threatens man himself.Dr Sajalendu Nanda is currently a Research Associate at Bangur Institute of Neurology in Calcutta. He possesses an MSc in Environmental Biology and a PhD in Ecology. His address for correspondence is c/o Dr P.K. Tapaswi, Professor-in-Charge at the Biological Sciences Division of the Indian Statistical Institute.  相似文献   

13.
The Potential Use of Chicken-Drop Micro-Organisms for Oil Spill Remediation   总被引:2,自引:0,他引:2  
An examination of chicken-drop micro-organisms for oil spill remediation is presented in this work. The chicken droppings contained aerobic heterotrophs (1.2×108 CFU g–1), total fungi (3.4×104 CFU g–1) and crude oil (transniger pipeline crude, TNP) degrading bacteria (1.5×106 CFU g–1). The crude oil degraders were identified as species of Micrococcus, Bacillus, Pseudomonas, Enterobacter, Proteus, Klebsiella, Aspergillus, Rhizopus, and Penicillium. Pseudomonas aeruginosa CDB-06 and species of Bacillus CDB-08 and Penicillium CDF-10 degraded the crude oil at exceedingly high rates. Pseuedomonas aeruginosa CDB-06 degraded 65.5 percent of the crude oil after 16 days, while Bacillus sp. CDB-08, and Penicillium sp. CDF-10 degraded 65.3 percent, and 53.3 percent, respectively of the crude oil over the same period. The chicken droppings also had a pH 7.3, 18.5 percent moisture content, 2.3 percent total nitrogen, and 0.5 percent available phosphorus. Addition of oil polluted soil (10 percent (v/w) pollution level) with chicken droppings enhanced degradation of the crude oil in the soil. 68.2 percent of the crude oil was degraded in the soil amended with chicken droppings, whereas only 50.7 percent of the crude oil was degraded in the unamended soil after 16 days. The amendment raised the acidic reaction (pH 5.7) of the oil-polluted soil to alkaline (pH 7.2) within 16 days. Chicken droppings could, therefore, be used in an integrated oil pollution abatement program.  相似文献   

14.
The aim of this study was to compare the growth kinetic responses to two different sets of conditions by investigating the growth kinetic response of Pseudomonas sp. which was isolated by an enrichment technique using a shaking water bath and a biosimulator. The viable count of the Pseudomonas sp. was initially determined on a small scale using sterile nutrient broth alone, plus broth supplemented with malathion (8.55 mg ml–1) incubated in a shaking water bath. A biosimulator was used on a larger scale to compare the growth kinetics of the Pseudomonas sp. using sterile undiluted and diluted (1:10) nutrient broth. The viable count was measured by the standard plate count (SPC) technique for both the sets of conditions (shaking water bath; biosimulator) and reported as colony forming units (CFU ml–1). In the shaking water bath experiments, the culture grew very well in the presence of 8.55 mg ml–1 malathion, as indicated by good growth response in comparison to that of nutrient broth alone. Similar studies were also performed using the same culture in the biosimulator, using undiluted and diluted (1:10) nutrient broth, results of which revealed, that at each sampling hour the viable population density was greater in the presence of undiluted nutrient broth, than in the presence of diluted (1:10) nutrient broth. A critical evaluation of data presented indicated that the growth performance of Pseudomonas sp. was better in the biosimulator when compared to the shaking water bath. As the Pseudomonas sp. is highly aerobic, it performed better in the biosimulator, where a greater quantity of oxygen (DO 4.0 mg l–1) was more readily available in comparison to the shaking water bath. The total quantity of nutrients available also affected the total viable population density. The study revealed that the wild isolate, when studied on a laboratory scale, could be effective in bioremediation of environmental pollution caused by pesticides.  相似文献   

15.
The objective of this research was to evaluate the impacts of increasing product removal on biomass and nutrient content of a central hardwood forest ecosystem. Commercial thinning, currently the most common harvesting practice in southern New England, was compared with whole-tree clearcutting or maximum aboveground utilization. Using a paired-watershed approach, we studied three adjacent, first-order streams in Connecticut. During the winter of 1981–82, one was whole-tree clearcut, one was commercially thinned, and one was designated as the untreated reference. Before treatment, living and dead biomass and soil on the whole-tree clearcut site contained 578 Mg ha–1 organic matter, 5 Mg ha–1 nitrogen, 1 Mg ha–1 phosphorus, 5 Mg ha–1 potassium, 4 Mg ha–1 calcium, and 13 Mg ha–1 magnesium. An estimated 158 Mg ha–1 (27% of total organic matter) were removed during the whole-tree harvest. Calcium appeared to be the nutrient most susceptible to depletion with 13% of total site Ca removed in whole-tree clearcut products. In contrast, only 4% (16 Mg ha–1) of the total organic matter and 2% of the total nutrients were removed from the thinned site. Partial cuts appear to be a reliable management option, in general, for minimizing nutrient depletion and maximizing long-term productivity of central hardwood sites. Additional data are needed to evaluate the long-term impacts of more intensive harvests.  相似文献   

16.
The rice fields, depleted of O2, contain large amount of moisture and organic substrates to provide an ideal anaerobic environment for methanogenesis and are one of the principal anthropogenic sources of methane. In order to mitigate this emission Alternative Electron Acceptors (AEA) were altered in the soil. The experiments were carried out in four seasons at the site of Balarampur, near Baruipur, South 24 Parganas, West Bengal, namely September–December, 2005 (Cultivar: Sundari), February–May, 2006 (Cultivar: Sundari), September–December, 2006 and February–May, 2007 (Cultivar: Swarna-Pankaj). The seasonal average methane flux (Fe treated), for the cultivar type “Sundari” (season: September–December, 2005), is 4.41 t ha−1, as compared to the value of 6.40 t ha−1 for the untreated soil. Similarly for February–May, 2006, the seasonal average methane flux (Fe treated) is 5.52 t ha−1, whereas the untreated flux is 5.69 t ha−1. In the third and fourth seasons we had two treatments with Ammonium Thiosulphate and Ferric Hydroxide. The seasonal average methane flux (treatment: Ammonium Thiosulphate) is 4.35 t ha−1 and 5.41 t ha−1 respectively, whereas for the ferric hydroxide treated soil it is 4.35 t ha−1 and 6.14 t ha−1 respectively. The properties related to the nutrient quality of the harvested paddy seeds supplement these results.  相似文献   

17.
The photosensitizing perylenequinone toxin elsinochrome A (EA) is produced in culture by the bindweed biocontrol fungus Stagonospora convolvuli LA39 where it apparently plays a pathogenicity related role. We investigated the fate of EA with reference to its stability under different temperature and light conditions. EA remained stable when boiled in water at 100C for 2 h. Similarly, exposing EA to 3–27C in the dark for up to 16 weeks did not affect its stability either in dry or in aqueous form. However, results from irradiation experiments indicate that direct photolysis may be a significant degradation pathway for EA in the environment. EA either in dry form or dissolved in water was degraded by different irradiation wavelengths and intensities, with degradation plots fitting a first order rate kinetics. EA degraded faster if exposed in aqueous form, and at higher quantum flux density (μmol s−1 m−2). Sunlight was more effective in degrading EA than artificial white light and ultraviolet radiations (UV-A or UV-B). Exposing EA to natural sunlight, particularly, during the intense sunshine (1,420– 1,640 μmol s−1 m−2) days of 30 July to 5 August 2004 in Zurich caused the substance to degrade rapidly with half-life under such condition only 14 h. This implies that should EA gets into the environment, particularly on exposed environmental niches, such as on plant surfaces through biocontrol product spray, or released from shed diseased leaves, it may have no chance of accumulating to ‘level of concern’. Furthermore, a toxicity assay using Trichoderma atroviride P1 as biosensor showed that photo-degraded EA was not toxic, indicating that no stable toxic by-products were left.  相似文献   

18.
Biomass and productivity were compared in two plantations and in one stand of natural regeneration on similar sites in a premontane moist forest region of Puerto Rico. While initial growth rates of plantation species were higher, after four decades productivity of the natural regeneration plots was equal to or greater than productivity of the plantations. For the first 44 years, aboveground biomass of natural regeneration increased at an average annual rate of 3.8t·ha–1·yr–1, but the last year of the study it was 14.7t·ha–1. Biomass increment of a pine plantation averaged between 8 and 10.5t·ha–1·yr–1 except for one year when the rate was much lower, possibly because of hurricane damage. A tropical hardwood plantation averaged close to 4t·ha–1·yr–1 for 41 years. It is suggested that in countries where funds for land reclamation are limited, intensive plantations may not always be the best strategy. Natural regeneration or shelterbelt plantations may be suitable alternatives.  相似文献   

19.
本文以橙黄Ⅰ、橙黄Ⅱ、橙黄Ⅳ和日落黄4种偶氮染料为目标染料,首次尝试利用外加弱磁场(~20 mT)的方法来强化零价铁脱色降解偶氮染料。结果表明加磁或不加磁时反应过程均符合一级反应动力学。在磁场的存在下,4种偶氮染料的降解速率都较不加磁场时有很大的提高,提高倍数分别为110.67、111.97、59.51和94.00。弱磁场对零价铁降解偶氮染料的促进作用可能是由于外加磁场所产生的洛伦兹力以及零价铁表面产生的感应磁场所产生的磁场梯度力促进了Fe2+的释放,加快了零价铁的腐蚀,促进零价铁释放更多电子和新生态氢,加速了—N=N—键的断裂,从而强化了染料的脱色降解。  相似文献   

20.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号