首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Specific surface area (SSA) is one of the principal soil properties used in modeling soil processes. In this study, artificial neural network (ANN) ensembles were evaluated to predict SSA. Complete soil particle-size distribution was estimated from sand, silt, and clay fractions using the model by Skaggs et al. and then the particle-size distribution curve parameters (PSDCPs) and fractal parameters were calculated. The PSDCPs were used to predict 20 particle-size classes for a soil sample’s particle size distribution. Fractal parameters were calculated by the model of Bird et al. In addition, total soil-specific surface area (TSS) was calculated using the above 20 size classes. Pedotransfer functions were developed for SSA and TSS using ANN ensembles from 63 pieces of SSA data taken from the literature. Fractal parameters, PSDCPs, and some other soil properties were used to predict SSA and TSS. Introducing fractal parameters and PSDCPs improved the SSA estimations by 12.5 and 11.1 %, respectively. The improvements were even better for TSS estimations (27.7 and 27.0 %, respectively). The use of fractal parameters as estimators described 44 and 92.8 % of the variation in SSA and TSS, respectively, while PSDCPs explained 42 and 6.6 % of the variation in SSA and TSS, respectively. The results suggested that fractal parameters and PSDCPs could be successfully used as predictors in ANN ensembles to predict SSA and TSS.  相似文献   

2.
In this study, we examined the ability of reflectance spectroscopy to predict some of the most important soil parameters for irrigation such as field capacity (FC), wilting point (WP), clay, sand, and silt content. FC and WP were determined for 305 soil samples. In addition to these soil analyses, clay, silt, and sand contents of 145 soil samples were detected. Raw spectral reflectance (raw) of these soil samples, between 350 and 2,500-nm wavelengths, was measured. In addition, first order derivatives of the reflectance (first) were calculated. Two different statistical approaches were used in detecting soil properties from hyperspectral data. Models were evaluated using the correlation of coefficient (r), coefficient of determination (R 2), root mean square error (RMSE), and residual prediction deviation (RPD). In the first method, two appropriate wavelengths were selected for raw reflectance and first derivative separately for each soil property. Selection of wavelengths was carried out based on the highest positive and negative correlations between soil property and raw reflectance or first order derivatives. By means of detected wavelengths, new combinations for each soil property were calculated using rationing, differencing, normalized differencing, and multiple regression techniques. Of these techniques, multiple regression provided the best correlation (P?<?0.01) for selected wavelengths and all soil properties. To estimate FC, WP, clay, sand, and silt, multiple regression equations based on first(2,310)-first(2,360), first(2,310)-first(2,360), first(2,240)-first(1,320), first(2,240)-first(1,330), and raw(2,260)-raw(360) were used. Partial least square regression (PLSR) was performed as the second method. Raw reflectance was a better predictor of WP and FC, whereas first order derivative was a better predictor of clay, sand, and silt content. According to RPD values, statistically excellent predictions were obtained for FC (2.18), and estimations for WP (2.0), clay (1.8), and silt (1.63) were acceptable. However, sand values were poorly predicted (RDP?=?0.63). In conclusion, both of the methods examined here offer quick and inexpensive means of predicting soil properties using spectral reflectance data.  相似文献   

3.
Understanding spatial variability of dynamic soil attributes provides information for suitably using land and avoiding environmental degradation. In this paper, we examined five neighboring land use types in Indagi Mountain Pass - Cankiri, Turkey to spatially predict variability of the soil organic carbon (SOC), bulk density (BD), textural composition, and soil reaction (pH) as affected by land use changes. Plantation, recreational land, and cropland were the lands converted from the woodland and grassland which were original lands in the study area. Total of 578 disturbed and undisturbed soil samples were taken with irregular intervals from five sites and represented the depths of 0-10 and 10-20 cm. Soil pH and BD had the lower coefficient of variations (CV) while SOC had the highest value for topsoil. Clay content showed greater CV than silt and sand contents. The geostatistics indicated that the soil properties examined were spatially dependent to the different degrees and interpolations using kriging showed the dynamic relationships between soil properties and land use types. The topsoil spatial distribution of SOC highly reflected the changes in the land use types, and kriging anticipated significant decreases of SOC in the recreational land and cropland. Accordingly, BD varied depending on the land use types, and also, the topsoil spatial distribution of BD differed significantly from that of the subsoil. Generally, BD greatly decreased in places where the SOC was relatively higher except in the grassland where overgrazing was the more important factor than SOC to determine BD. The topsoil spatial distributions of clay, silt, and sand contents were rather similar to those of the subsoil. The cropland and grassland were located on the very fine textured soils whereas the woodland and plantation were on the coarse textured soils. Although it was observed a clear pattern for the spatial distributions of the clay and sand changing with land uses, this was not the case for the silt content, which was attributed to the differences of dynamic erosional processes in the area. The spatial distribution of the soil pH agreed with that of the clay content. Soils of the cropland and grassland with higher amounts of clay characteristically binding more cations and having higher buffering capacities had the greater pH values when compared to the soils of other land uses with higher amounts of sand naturally inclined to be washed from the base cations by the rainwater.  相似文献   

4.
The combination of morphological, clay mineralogy, physicochemical, and fertilitical properties of inceptisols were compared for monitoring soil quality response following long-term agricultural activities. For this target, fifty-nine paired surface soils belonging to five subgroups of inceptisols from the major sugar beet growing area and the adjoining virgin lands were described, sampled, and analyzed. The soils were alkaline and calcareous as characterized by high pH, ranging from 7.2 to 8, and calcium carbonate equivalent, ranging from 60 to 300 g kg − 1. Following long-term sugar beet cultivation, morphological properties modifications were reflected as weakening of structure, hardening of consistency, and brightening of soil color. Although, the quantity of clay minerals did not significantly change through long-term cropping, some modifications in the XRD pattern of illite and smectite were observed in the cultivated soils compared to the adjoining virgin lands mainly as a result of potassium depletion. Without significant variation, sand content decreased by 4–55% and silt and clay increased by 3–22% and 2–15%, respectively, in the cultivated soils than to that of the virgin lands. Both negative and positive aspects of soil quality were reflected regarding soil chemical and fertilitical properties and the role of negative effects far exceeded the role of positive effects. Typic calcixerepts was known to be more degraded through a significant decrease (P ≤ 0.001) in mean value of soil organic carbon (a drop of 24%), total N (a drop of 23%), available K (a drop of 42%), exchangeable K (a drop of 45%), potassium adsorption ratio and potassium saturation ratio (a drop of 44% and 42%, respectively) and a significant increase (P ≤ 0.001) in EC (a rise of 53%). Soil quality index, calculated based on nine soil properties [coarse fragments, pH, SOC, total N, ESP, exchangeable cations (Ca, Mg, and K), and available phosphorus], indicated that 60% of the all soil types studied had negative changes, 20% had positive changes, and 20% produced no changes in soil heath.  相似文献   

5.
Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus reducing atmospheric C concentration), as well as to select more appropriate species during forestation plan management at least in the north of Iran.  相似文献   

6.
This article reports on soil samples collected from Hsiang-Shan wetland, Taiwan. Canonical discriminant analysis (CDA) was applied to identify an existing habitat type's scheme by identifying the physico-chemical properties of sediment in Hsiang-Shan wetland. The three constructed discriminant functions (CDFs) showed a marked contribution by most of the discriminant variables, and the recognition capacities in these three CDFs were 49.5, 32.8 and 17.7%. Our study revealed that the most important latent factors in Hsiang-Shan wetland are soil texture-caused factor, ocean current-caused factor, nutrient-caused factor, and the redox reaction-caused factor. And the most sensitivity parameters in this habitat followed the descending order: OBD, EC, Eh, sand, TN, porosity, STP, silt, VCP and pH. And the inhabited sediment properties for U. formosensis in terms of soil texture are sand, silt, and clay (34.05, 29.72, and 32.35%, respectively): that is clay loam soil. We also found that U. formosensis preferred to inhabit the upper intertidal zone, spending 8.41% of the time submerged. Vegetation coverage on the ground was less than 2.20%, showing that it preferred to live in a bare intertidal habitat. Concerning nest choosing, excavating burrows is more difficult when a high soil penetration force is required, and in this study the soil penetration force for 20 cm was found to be is 45.98 N/cm(2). The results will be helpful in developing a methodology for use by the government in refining its management programs.  相似文献   

7.
Fluoride in fractionated soil samples of Ajmer district,Rajasthan   总被引:1,自引:0,他引:1  
The natural abundance of fluoride in soils of the Ajmer distict, Rajasthan was examined. From undisturbed soil, the top 15 cm of the profile was examined and the soil split into fractions based on sand, silt and clay particle size. Clay contained a high amount of fluoride, whereas sand and silts are enriched with much less fluoride. The relation between the soil fractions in observed clay fraction fluoride content matched groundwater fluoride variation. However, the enrichment of fluoride material extracted from the largest soil fraction had considerably lower amounts of clay relative to that from the smaller fractions.  相似文献   

8.
Possible bioaccumulation of pesticides in crop produce may cause ailing effect on animal and human. Thus there is a need to evaluate these chemicals in the soil and crop produce at harvest. Metsulfuron-methyl is a post-emergence herbicide. It is highly active to control broad-leaf weeds in cererals, pasture and plantation crops. Metsulfuron-methyl was applied at 3, 4, 5, and 8 g a.i. ha(-1) rates, after 30 days of sowing in wheat as post-emergence herbicide. Soil samples treated with metsulfuron-methyl were collected after 30 and 60 days along with control and at harvest after herbicide application and analyzed for residues by High Performance Liquid Chromatography (HPLC) using photo diode array detector at 220 nm. Wheat grains and straw samples were sampled at harvest. At harvest the residue level of metsulfuron-methyl in soil was found below the detection limit at 3-5 g a.i. ha(-1) application rates and 0.002 microg g(-1) at 8 g a.i. ha(-1), respectively. No residues of metsulfuron-methyl were detected in wheat grains at 3-4 g a.i. ha(-1) rates. However 0.002 microg g(-1) residues were detected in wheat straw at 5 and 8 g a.i. ha(-1) application rates. It can be concluded that metsulfuron-methyl application at 3-4 g a.i. ha(-1) can be safely applied to the wheat crop as post-emergence herbicide.  相似文献   

9.
Irrigation with municipal effluent was evaluated during 25 months in Southern Iran from 2003 to 2005 in which 14 tree species were irrigated with effluent and borehole water at an annual supply rate of 3,940 and 5,395 m(3) ha(-1), respectively. To mitigate the environmental effects, a drip irrigation system was designed and the amount of applied water based on pan evaporation was measured by flow meters and soil properties were monitored. The statistical results showed that the applied effluent had no adverse effect on soil properties. The soil salinity was reduced from 8.2, 6.8 and 7.0 dSm(-1) to 1.07, 1.12 and 3.5 dSm(-1 )in the soil layers 0-30, 30-60 and 60-90 cm, respectively. The SAR decreased significantly, while soil pH increased by 0.8 and 0.6 units in the layers 0-30 and 30-60 cm. A total application of 9,335 m(3)ha(-1 )of effluent with a nitrogen and phosphorus concentration of 7.9 and 10.3 mg l(-1), added 73 and 101 kg ha(-1) of nitrogen and phosphorus to the soil. Organic carbon also increased significantly. Twenty-five months irrigation with effluent caused a slight increase in soil bulk density and a slight decrease in mean permeability. Because of an efficient filtration and high discharge rate of bubblers (drippers), no considerable sign of clogging was observed.  相似文献   

10.
Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p?<?0.01), available P (p?<?0.01), cation exchange capacity (p?<?0.05), and organic carbon (p?<?0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p?<?0.01), pH, and clay content (p?<?0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.  相似文献   

11.
This study investigates the ability of different digital soil mapping (DSM) approaches to predict some of physical and chemical topsoil properties in the Shahrekord plain of Chaharmahal-Va-Bakhtiari province, Iran. According to a semi-detailed soil survey, 120 soil samples were collected from 0 to 30 cm depth with approximate distance of 750 m. Particle size distribution, coarse fragments (CFs), electrical conductivity (EC), pH, organic carbon (OC), and calcium carbonate equivalent (CCE) were determined. Four machine learning techniques, namely, artificial neural networks (ANNs), boosted regression tree (BRT), generalized linear model (GLM), and multiple linear regression (MLR), were used to identify the relationship between soil properties and auxiliary information (terrain attributes, remote sensing indices, geology map, existing soil map, and geomorphology map). Root-mean-square error (RMSE) and mean error (ME) were considered to determine the performance of the models. Among the studied models, GLM showed the highest performance to predict pH, EC, clay, silt, sand, and CCE, whereas the best model is not necessarily able to make accurate estimation. According to RMSE%, DSM has a good efficiency to predict soil properties with low and moderate variabilities. Terrain attributes were the main predictors among different studied auxiliary information. The accuracy of the estimations with more observations is recommended to give a better understanding about the performance of DSM approach over low-relief areas.  相似文献   

12.
Pressurised fluid extraction (PFE) of polycyclic aromatic hydrocarbons (PAHs) from a certified reference material (CRM) 524 has been firstly optimised following a central composite design. The instrumental parameters of the PFE (pressure, temperature, extraction time and number of solvent cycles) were studied in order to obtain maximum extraction yields. Neither pressure nor extraction time or temperature seemed to have any significant effect on the extraction yield, therefore one extraction cycle was enough to exhaustively extract all the PAHs from CRM 524. Once the instrumental conditions were established, the extraction yields obtained with eight different solvents or solvent mixtures [acetone, dichloromethane, acetonitrile, acetone-dichloromethane (1 + 1 v/v), acetone-isohexane (1 + 1 v/v), isohexane, methanol and toluene] from the CRM 524 were compared and showed that the best recoveries were obtained with acetone-isohexane (1 + 1 v/v). Finally, the effect of sand, silt, clay and the organic matter content of soil was investigated with respect to recovery of PAHs by PFE with different solvents or solvent mixtures for aged soil samples. In this case, eight soils with different sand, silt, clay and organic matter contents were slurry spiked with PAHs and aged for 19 days. Three aliquots of each slurry spiked soil were extracted with the previously mentioned solvents and the results were studied by means of principal component analysis (PCA) of the whole data set (soil composition, solubility parameter of the solvent and recoveries of all PAHs) and partial least squares (PLS). Clay and organic matter content and the squared solubility parameter have the highest correlation with the recovery of PAHs from soil samples.  相似文献   

13.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

14.
Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.  相似文献   

15.
The present communication is a study on the impact of bottom trawling on the sediment characteristics along Veraval coast, which is the largest trawler port of India. Experimental bottom trawling was conducted from MFV Sagarkripa at five transects of water depths 15–20 m, 21–25 m, 26–30 m, 31–35 m and 36–40 m in commercial trawling grounds. Trawling was conducted for 12 months in a span of 15 months (September 2005–November 2006) excluding the trawl ban period (June to August). The sediment texture was analysed by pipette analysis and organic matter by wet oxidation method. The variations in organic matter and sediment texture were prominent between the stations selected at different depths. The sedimentary organic matter exhibited variations with different water depths and seasons. The organic matter content decreased with depth. Experimental trawling considerably reduced the organic matter content at all depths. Continued and incessant trawling operation can cause even more drastic reductions, where organic matter (OM) content is already very small. The sand proportion showed depth-wise variation; but seasonal and trawling effect was not significant showing highest values at 36–40 m depth. The silt proportion did not exhibit significant depth-wise variation. The seasonal variation of silt was significant whereas trawling effect imparted to silt was not evident. Trawling has no significant effect on clay concentration. But seasonal variation had great influence on the clay distribution and indicated significantly high depth–season interaction. The sediment of the study area was predominant in silt proportion. It was observed that the seasonal/natural variations were more prominent masking the trawling effect on silt.  相似文献   

16.
Illegal dumping of polychlorinated biphenyl (PCB) capacitors was discovered in Kobe, Japan, in 2001, leaving about 68 m(3) (92 tons) of soil contaminated with approximately 6.6 kg of PCBs. Solvent extraction technology carried out in 2002-2003 using isopropyl alcohol remedied the affected soil at the site. Forty-seven batch treatments were conducted during full-scale treatment. On average, 8.4 extraction cycles per batch were needed to achieve the clean-up goal for PCBs (i.e., the Japanese environmental quality standard for soil). Analytical results showed that the average PCB concentration (88 microg g(-1)-dry soil) in untreated soil samples of all the batches was decreased to 1.2 microg g(-1)-dry soil in treated soil samples, yielding a removal efficiency of 98.6%. Dioxin responsive-chemical activated luciferase gene expression assay (DR-CALUX) and enzyme-linked immunosorbent assay (ELISA) adopting a monoclonal antibody against 2,3',4,4',5-pentachlorobiphenyl (PCB #118) were used to rapidly screen soil samples before and after solvent extraction. The DR-CALUX and ELISA results were in good agreement with World Health Organization toxicity equivalent values and analytically determined PCB concentrations, respectively. Regular monitoring during the treatment period confirmed that the applied technology met Japanese environmental and control regulations concerning treatment and disposal of contaminated soils and treatment residues. After full-scale treatment, the amount of PCBs recovered from the solvent purification system approximated the estimated amount of PCBs spilled.  相似文献   

17.
Persistence of dicofol residues in cotton lint seed, and soil   总被引:1,自引:0,他引:1  
A supervised field trial was conducted at the CCS Haryana Agricultural University, Hisar to assess the residues of dicofol on cotton, during Kharif season, 2008. Dicofol (Kelthane 18.5EC) was applied at 500 g a.i./ha (T(1)) and 1,000 g a.i./ha T(2)) after 105 days of sowing of cotton crop (Varity Cotton/H-1226). Soil samples were collected on 0 (1 h after treatment), 3, 7, 10, 15, 30, and 60 days after spray and cotton samples were collected at harvest. Samples were processed and residues were quantified by GC-ECD system equipped with capillary column. Limit of detection and limit of quantification (LOQ) were 0.001 and 0.010 mg kg(?-1), respectively, for soil and LOQ for cotton lint and seed was 0.020 mg kg(?-1). Initial residues of 0.588 and 1.182 mg kg(?-1) in soil reached below detectable level (BDL) of 0.010 mg kg(?-1) in T(1) and to the level of BDL (0.010 mg kg(?-1)) in T(2) at harvest (60 days after treatment). In 60 days, residues dissipated almost completely (100 and >99%) in both the treatments. Half-life period was calculated as 8.57 days at single dose and 8.69 days at double dose in soil. Residues of dicofol were detected in cotton lint to the levels of 0.292 and 0.653 mg kg(?-1) and in seed 0.051 and 0.090 mg kg(?-1) in T(1) and T(2) doses, respectively at harvest. Residues in cotton seed were below MRL value of 0.01 mg kg(?-1) in both the doses.  相似文献   

18.
A Neubauer plantlet experiment was carried out using Inceptisol (Typic Haplustept) and Vertisol (Typic Chromustert) soils contaminated with 134Cs at 74 kBq kg(-1) soil to study the transfer factor to wheat crop (Triticum aestivum) as influenced by four levels of humic acid (100, 200, 300, 400 mg HA kg(-1) soil), potassium and NH4-N (36.4, 54.5, 72.7 and 90.9 mg K or NH4 kg(-1) soil) under tropical climate. The biomass yield and K uptake by wheat were significantly improved in Vertisol with NH4-N and K application. The potassium application significantly increased the potassium concentration in wheat plants. The increase in the levels of each of the treatments dramatically improved the yield, K content and K uptake parameters, irrespective of the soils. The 134Cs transfer factors, irrespective of the treatments were observed to be higher in Vertisols as compared to Inceptisols. Among the treatments, the effect of HA was significantly greater than that of K and NH4-N application in Inceptisol, however, in Vertisols both HA and NH4-N were observed to be superior as compared to K application. With each increment in the levels of the treatments, a significantly lowered TF value was found, higher in Inceptisols (56.3%) than Vertisols (48.5%). Comparison of treatments indicates that in general higher potassium concentration in plant drastically lowered radiocesium transfer to wheat. Neubauer plant culture study, a rapid laboratory experimental model based on simple soil-plant system was quite clearly brought out the potential effectiveness of N, K and HA on soil-to-wheat transfer of radiocesium. Such screening technique needs to be extended to cover wider crop species, different climatic conditions and factors governing/modifying the mobility of radiocesium in soil and its absorption by crop plants.  相似文献   

19.
The aims of this study were to determine the contents of cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), aluminium (Al), and iron (Fe) (aqua regia-extractable) in 27 soil plots (54 samples) from Manresa, NE Spain, and to establish relationships between heavy metals and some soil properties. The main soil types were surveyed and the median concentrations (mg kg(-1)) obtained were Cd 0.28, Cu 20.3, Pb 18.6, Zn 67.4, Al 22,572, and Fe 21,551. Element concentrations for these soils were lower than the published values for the Valencia region (Spain) and Torrelles and Sant Climent municipal districts (Catalonia, Spain). In terms of soil properties, the results of this study suggest that, in Manresa soils, both trace element adsorption and retention are influenced by several properties such as clay minerals, carbonates, organic matter, and pH. All element contents were positively correlated with clay content. Pb and Zn were negatively correlated with pH and CaCO(3).  相似文献   

20.
Early season or crop-planting-period (ES/CPP) drought conditions have become a recurrent phenomenon in tropical countries like India, due to fluctuations in the time of onset and progression of monsoon rains. ES/CPP agricultural drought assessment is a major challenge because of the difficulties in the generation of operational products on soil moisture at larger scales. The present study analyzed the Shortwave Angle Slope Index (SASI) derived from Near Infrared and Shortwave Infrared data of Moderate Resolution Imaging Spectroradiometer, for tracking surface moisture changes and assessing the agricultural drought conditions during ES/CPP, over Andhra Pradesh state, India. It was found that in-season progression of SASI was well correlated with rainfall and crop planting patterns in different districts of the study area state in both drought and normal years. Rainfall occurrence, increase in crop planted area, and decrease in SASI were in chronological synchronization in the season. Change in SASI from positive to negative values is a unique indication of dryness to wetness shift in the season. Duration of positive SASI values indicated the persistence of agricultural drought in the crop planting period. Mean SASI values were able to discriminate an area which was planted in normal year and unplanted in drought year. SASI thresholds provide an approximate and rapid estimate of the crop planting favorable area in a region which is useful to assess the impact of drought. Thus, SASI is a potential index to strengthen the existing operational drought monitoring systems. Further work needs to be on the integration of multiple parameters—SASI, soil texture, soil depth, rainfall and cropping pattern, to evolve a geospatial product on crop planting favorable areas. Such products pave the way for quantification of drought impact on agriculture in the early part of the season, which is a major inadequacy in the current drought monitoring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号