首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.  相似文献   

2.
Nitrogen deposition and its ecological impact in China: An overview   总被引:29,自引:0,他引:29  
Nitrogen (N) deposition is an important component in the global N cycle that has induced large impacts on the health and services of terrestrial and aquatic ecosystems worldwide. Anthropogenic reactive N (Nr) emissions to the atmosphere have increased dramatically in China due to rapid agricultural, industrial and urban development. Therefore increasing N deposition in China and its ecological impacts are of great concern since the 1980s. This paper synthesizes the data from various published papers to assess the status of the anthropogenic Nr emissions and N deposition as well as their impacts on different ecosystems, including empirical critical loads for different ecosystems. Research challenges and policy implications on atmospheric N pollution and deposition are also discussed. China urgently needs to establish national networks for N deposition monitoring and cross-site N addition experiments in grasslands, forests and aquatic ecosystems. Critical loads and modeling tools will be further used in Nr regulation.  相似文献   

3.
Haye S  Slaveykova VI  Payet J 《Chemosphere》2007,68(8):1489-1496
Life cycle impact assessment aims to translate the amounts of substance emitted during the life cycle of a product into a potential impact on the environment, which includes terrestrial ecosystems. This work suggests some possible improvements in assessing the toxicity of metals on soil ecosystems in life cycle assessment (LCA). The current available data on soil ecotoxicity allow one to calculate the chronic terrestrial HC50(EC50) (hazardous concentration affecting 50% of the species at their EC50 level, i.e. the level where 50% of the individuals of the species are affected) of nine metals and metalloids (As(III) or (V), Be(II), Cr(III) or (VI), Sb(III) or (V), Pb(II), Cu(II), Zn(II) and Ni(II)). Contrarily to what is generally advised in LCIA, the terrestrial HC50 of metals shall not be extrapolated from the aquatic HC50, using the Equilibrium Partitioning method since the partition coefficient (K(d)) of metals is highly variable. The experimental ecotoxicology generally uses metallic salts to contaminate artificial soils but the comparison of the EC50 or NOEC obtained for the same metal with different salts reveals that the kind of salt used insignificantly influences these values. In contrast, depending on the metallic fraction of concern, the EC50 may vary, as for cadmium: the EC50 of Folsomia candida, expressed as free Cd in pore water is almost 2.5 orders of magnitude lower than that expressed as total metal. A similar result is obtained with Eisenia fetida, confirming the importance of metals speciation in assessing their impact on soils. By ranking the metals according to the difference between their terrestrial and aquatic HC50 values, two groups are distinguished, which match the hard soft acids and bases (HSAB) concept. This allows to estimate their affinity for soil components and potential toxicity according to their chemical characteristics.  相似文献   

4.
Arctic warming is causing ancient perennially frozen ground (permafrost) to thaw, resulting in ground collapse, and reshaping of landscapes. This threatens Arctic peoples'' infrastructure, cultural sites, and land-based natural resources. Terrestrial permafrost thaw and ongoing intensification of hydrological cycles also enhance the amount and alter the type of organic carbon (OC) delivered from land to Arctic nearshore environments. These changes may affect coastal processes, food web dynamics and marine resources on which many traditional ways of life rely. Here, we examine how future projected increases in runoff and permafrost thaw from two permafrost-dominated Siberian watersheds—the Kolyma and Lena, may alter carbon turnover rates and OC distributions through river networks. We demonstrate that the unique composition of terrestrial permafrost-derived OC can cause significant increases to aquatic carbon degradation rates (20 to 60% faster rates with 1% permafrost OC). We compile results on aquatic OC degradation and examine how strengthening Arctic hydrological cycles may increase the connectivity between terrestrial landscapes and receiving nearshore ecosystems, with potential ramifications for coastal carbon budgets and ecosystem structure. To address the future challenges Arctic coastal communities will face, we argue that it will become essential to consider how nearshore ecosystems will respond to changing coastal inputs and identify how these may affect the resiliency and availability of essential food resources.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01666-z.  相似文献   

5.
Climate change is projected to cause significant alterations to aquatic biogeochemical processes, (including carbon dynamics), aquatic food web structure, dynamics and biodiversity, primary and secondary production; and, affect the range, distribution and habitat quality/quantity of aquatic mammals and waterfowl. Projected enhanced permafrost thawing is very likely to increase nutrient, sediment, and carbon loadings to aquatic systems, resulting in both positive and negative effects on freshwater chemistry. Nutrient and carbon enrichment will enhance nutrient cycling and productivity, and alter the generation and consumption of carbon-based trace gases. Consequently, the status of aquatic ecosystems as carbon sinks or sources is very likely to change. Climate change will also very likely affect the biodiversity of freshwater ecosystems across most of the Arctic. The magnitude, extent, and duration of the impacts and responses will be system- and location-dependent. Projected effects on aquatic mammals and waterfowl include altered migration routes and timing; a possible increase in the incidence of mortality and decreased growth and productivity from disease and/or parasites; and, probable changes in habitat suitability and timing of availability.  相似文献   

6.
The paper summarises the results to determine the fluxes of different N-compounds within the atmosphere and an aquatic and a terrestrial ecosystems, in Hungary. In the exchange processes of N-compounds between atmosphere and various ecosystems the deposition dominates. The net deposition fluxes are -730, -1270 and -1530 mg Nm(-2)yr(-1) for water, grassland, and forest ecosystems, respectively. For water, the main source of nitrogen compounds is the wet deposition. Ammonia gas is close to the equilibrium between the water and the air. For grassland the dry flux of nitric acid and ammonia is also an important term beside the wet deposition. Dry deposition to terrestrial ecosystems is roughly two times higher than wet deposition. A total of 8-10% of the nitrates and NH(x) deposited to terrestrial ecosystems are re-emitted into the air in the form of nitrous oxide (N2O) greenhouse gas.  相似文献   

7.
Environmental Science and Pollution Research - The effect of fungicides, commonly used in vine cultures, on the health of terrestrial and aquatic ecosystems has been poorly studied. The objective...  相似文献   

8.
Recent research has indicated that the atmosphere is an important pathway by which pollutants enter terrestrial and aquatic ecosystems. We report here concentrations of PCBs and octachlorostyrene (OCS) in precipitation, soils and plants in Essex County, Ontario. The average PCB concentration in urban precipitation (23 ng litre(-1)) was lower than that previously reported for urban areas in the Great Lakes basin. Differences between sites and with varying wind directions were not significant. OCS concentrations in precipitation averaged 1.6 ng litre(-1). Concentrations of PCBs in soils were 2-3 orders of magnitude greater than in precipitation. Concentrations of these pollutants in city soils and plant roots were consistently higher than those from suburban and rural sites. Ratios of urban to suburban concentrations in soils and precipitation were approximately 5:1 for PCBs. However, concentrations of OCS were similar in urban and suburban samples of precipitation, soils and plant tissues. These comparisons suggest an urban source for PCBs, but not OCS. Concentrations of all contaminants in plant leaves, unlike those in precipitation, roots and soils, were relatively similar in urban and suburban areas. That similarity suggests that direct foliar uptake is not an important pathway for pollutant uptake in plants.  相似文献   

9.

Background, aim, and scope  

A rapid increase in anthropogenic nitrogen inputs has a strong impact on terrestrial and aquatic ecosystems. We have estimated net anthropogenic nitrogen accumulation (NANA) as an index of nitrogen (N) pollution potential in the Beijing metropolitan region, China. Our research provides a basis for understanding the potential impact of anthropogenic N inputs on environmental problems, such as nation-wide water quality degradation under the current rapid urban expansion in modern China.  相似文献   

10.
Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source.  相似文献   

11.
The most stable forms of chromium in the environment are chromium (III) and chromium (VI), the former being relatively immobile and necessary for organisms, and the latter being highly soluble and toxic. It is thus important to characterise ecotoxicological impacts of Cr(VI). However, there are still some important uncertainties in the calculation of ecotoxicological impacts of heavy metals in the LCIA global approach. The aim of this paper is to understand how the spatial and dynamic characterization of life cycle inventory (LCI) data can be exploited in life cycle impact assessment and particularly for the evaluation of the aquatic and terrestrial ecotoxicity of Cr(VI). To quantify these impacts, we studied an industrial waste landfill in the North of France that was contaminated with chromium. On the polluted area, the aquatic contamination is due to the slag heap as well as to chromium spots in soil. The soil contamination is mainly due to infiltration of chromium from the infill. The concentration of Cr(VI) in soil and water varies according to seasonal climatic variations and groundwater level. These variations have an effect on the Cr(VI) fate factor, in particular on transfer and residence time of the substance. This study underlines the spatial distribution of aquatic ecotoxicity and the temporal variation of freshwater ecotoxicity. We analysed the correlation between precipitation, temperature, concentration and ecotoxicity impact. With regards to the terrestrial ecotoxicity, the study focused on the vertical variation of the ecotoxicity and the major role of the soil layer composition into terrestrial pollution.  相似文献   

12.
Conservation efforts tend to focus on the direct impacts humans have on their surrounding environment; however there are also many ways in which people indirectly affect ecosystems. Recent research on ecological subsidies—the transfer of energy and nutrients from one ecosystem to another—has highlighted the importance of nutrient exchange for maintaining productivity and diversity at a landscape scale, while also pointing toward the fragility of ecotones and vulnerability of subsidies to human activities. We review the recent literature on landscape connectivity and ecosystem subsidies from aquatic systems to terrestrial systems. Based on this review, we propose a conceptual model of how human activities may alter or eliminate the flow of energy and nutrients between ecosystems by influencing the delivery of subsidies along the pathway of transfer. To demonstrate the utility of this conceptual model, we discuss it in the context of case studies of subsidies derived from salmon, marine mammals, sea turtles, sea birds, and shoreline debris. Subsidy restoration may require a different set of actions from simply reversing the pathway of degradation. We suggest that effective restoration and conservation efforts will require a multifaceted approach, targeting many steps along the subsidy transfer pathway, to address these issues.  相似文献   

13.
Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human–ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.  相似文献   

14.
Yu Q  Chaisuksant Y  Connell D 《Chemosphere》1999,38(4):909-918
Experimental data have shown that the internal lethal concentrations of halobenzenes for aquatic organisms decreased with exposure time. In this paper, a model based on the concept of life expectancy reduction was developed to describe this relationship. The model was verified with experimental data for fish (Gambusia affinis) and juvenile crab (Porturius pelagicus(L)). It is proposed that long term non-specific toxicity can be measured as the reduction of the life expectancy of the exposed organism per unit internal concentration (or volume fraction) of the toxic compound. The model can be used to estimate internal lethal concentration at any given exposure period and vice versa. The model can also be used to estimate chronic values of the internal concentration, of the toxicants. It provides a useful tool for assessment of environmental risk of organic compounds in aquatic ecosystems.  相似文献   

15.
Environmental Science and Pollution Research - Microplastics are the new emerging pollutants ubiquitously detectable in aquatic and terrestrial ecosystems. Fate and behavior, as well as...  相似文献   

16.
Abstract

Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area’s ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service’s Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.  相似文献   

17.
The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.  相似文献   

18.

Background, aim, and scope  

Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries.  相似文献   

19.
Coastal habitats are situated on the border between land and sea, and ecosystem structure and functioning is influenced by both marine and terrestrial processes. Despite this, most scientific studies and monitoring are conducted either with a terrestrial or an aquatic focus. To address issues concerning climate change impacts in coastal areas, a cross-ecosystem approach is necessary. Since habitats along the Baltic coastlines vary in hydrology, natural geography, and ecology, climate change projections for Baltic shore ecosystems are bound to be highly speculative. Societal responses to climate change in the Baltic coastal ecosystems should have an ecosystem approach and match the biophysical realities of the Baltic Sea area. Knowledge about ecosystem processes and their responses to a changing climate should be integrated within the decision process, both locally and nationally, in order to increase the awareness of, and to prepare for climate change impacts in coastal areas of the Baltic Sea.  相似文献   

20.
Anthropogenic changes to the global N cycle are important in part because added N alters the composition, productivity, and other properties of many natural ecosystems substantially. Why does added N have such a large impact? Why is N in short supply in so many natural ecosystems? Processes that slow the cycling of N relative to other elements and processes that control ecosystem-level inputs and outputs of N could cause N supply to limit the dynamics of ecosystems. We discuss stoichiometric differences between terrestrial plants and other organisms, the abundance of protein-precipitating plant defenses, and the nature of the C-N bond in soil organic matter as factors that can slow N cycling. For inputs, the energetic costs of N fixation and their consequences, the supply of nutrients other than N, and preferential grazing on N-fixers all could constrain the abundance and/or activity of biological N-fixers. Together these processes drive and sustain N limitation in many natural terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号