首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Emission of ethylene from the needles of Japanese red pine, Pinus densiflora, was measured in air-polluted areas in Hiroshima, Japan. We applied a suitable protocol to determine the rate of ethylene emission from the excised needles. The influence of excision of needles on ethylene emission was not detected during the first 4 h of incubation at 20 degrees C. Ethylene emissions were low in the unpolluted (clean) areas regardless of the altitude or season. The emission of stress ethylene increased with the atmospheric NO2 concentration, suggesting that atmospheric NOx or related substances induced the higher ethylene emission in the polluted areas (near urban and industrial areas). In all cases, 1-year-old needles emitted significantly larger amounts of ethylene than the current needles. Ethylene emission did not increase evenly in the polluted areas, but the frequency of trees emitting high ethylene increased. Therefore, threshold rates for the baseline ethylene emission were proposed.  相似文献   

2.
Ethylene is an unusual air pollutant in that it is a plant hormone. Motor vehicle exhaust is a primary source. In the Washington, D. C, area, ethylene concentrations ranged from 700 ppb in the city center to 39 ppb in areas outside the circumferential beltway. Plants grown in these concentrations of ethylene, using controlled environment chambers, exhibited typical symptoms of ethylene toxicity: reduced growth, premature senescence, and reduced flowering and fruit production. When plants were grown in carbon-filtered ambient air, which was also filtered through KMnO4 to remove ethylene by oxidation, growth, flowering, and fruit production increased. These observations demonstrate that ethylene air pollution is a continual source of stress for plant growth and development in an urban environment.  相似文献   

3.
Activated charcoal, Amberlite XAD-2 and Amberlite XAD-7 were evaluated for the adsorption of epichlorohydrin and ethylene chlorohydrin from air followed by desorption with solvent. Ethylene chlorohydrin was found to be unstable on activated charcoal in the presence of carbon disulfide. Recoveries from XAD-2 were low, and XAD-7 was found to be the best adsorbent for the sampling of these compounds from air.  相似文献   

4.
ABSTRACT

In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel.

The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane,and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst,while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

5.
Oxidation of ethylene glycol in aqueous solutions was found to occur with the addition of Fenton's reagent with further conversion observed upon UV irradiation. The pH range studied was 2.5-9.0 with initial H2O2 concentrations ranging from 100 to 1000 mg/l. Application of this method to airport storm-water could potentially result in reduction of chemical oxygen demand by conversion of ethylene glycol to oxalic and formic acids. Although the amount of H2O2 added follows the amount of ethylene glycol degraded, smaller H2O2 doses were associated with increases in the ratio of ethylene glycol removed per unit H2O2 added indicating the potential of pulsed doses or constant H2O2 feed systems. Ethylene glycol removal was enhanced by exposure to UV light after treatment with Fenton's reagent, with rates dependent on initial H2O2 concentration. In addition to ethylene glycol, the principle products of this reaction, oxalic and formic acids, have been shown to be mineralized in other HO generating systems presenting the potential for ethylene glycol mineralization in this system with increased HO* production.  相似文献   

6.
In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel. The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane, and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst, while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

7.
Urban air, snow and automobile exhaust samples were extensively cleaned up by open column liquid chromatography. The appropriate fractions were analysed for halogenated polycyclic aromatic hydrocarbons (XPAH) by gas chromatography/negative chemical ionization mass spectrometry (GC/NCIMS). XPAH were found in all three sample types. A urban air sample was found to contain chlorinated pyrenes, fluoranthenes and benzopyrene and brominated pyrenes and fluoranthenes. Furthermore, the concentration of 1-chloropyrene in that air sample was estimated to be 10 pg/m3. XPAH were also found in snow samples taken in the vicinity of a motor-way. Ethylene dibromide and ethylene dichloride, are probably the source of the halogen atoms in the XPAH detected in car exhaust.  相似文献   

8.
Ozone-induced changes in ethylene production, ACC oxidase activity and the contents of ACC, MACC and free PAs were studied inPopulus nigra L. cv. Loenen with high ozone sensitivity as judged by the degree of chlorophyll degradation and premature leaf abscission. Ethylene production, ACC oxidase activity, ACC content and MACC levels were induced by the one-, two-, and three-week ozone exposure (36±9 ppb O3 for 11 hours a day). In addition, increases in PA levels, especially in spermidine, were measured in ozone treated plants. The role of free PAs and MACC synthesis as possible antisenescence reactions is discussed.  相似文献   

9.
Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 g m(-3) in 1982 and 15.6 g m(-3) in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.  相似文献   

10.
In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.  相似文献   

11.
制药污泥的脱水处理及毒性削减是当前业界的研究热点。以污泥脱水性能(污泥比阻和泥饼含固率)和污泥综合急性毒性为评价指标,对2种不同型号PAM处理污泥的投加量进行优化,讨论了污泥絮凝脱水和毒性削减的机理。研究结果表明,处理100 mL原污泥,当制药污水厂现场使用的德国天使PAM和拓普戴克TOP8321型PAM投加量分别为4mg/L和12 mg/L时,污泥脱水性能达到最佳,此时污泥比阻从0.730×1012cm/g分别降低至0.126×1012cm/g和0.034×1012cm/g,泥饼含固率从16.32%分别提高至46.89%和34.98%;在毒性削减方面,2种混凝剂都可将污泥上清液毒性由微毒降至无毒,但对污泥毒性的削减效果不明显。对2种PAM的处理成本进行估算发现,污水厂现场使用的PAM对处理该制药污泥效果更佳,且费用相对较低,但要大幅度削减制药污泥的毒性需串联相应毒性削减技术和混凝沉淀单元。  相似文献   

12.
The Dosage-Area Product is an areawide smog index obtained by combining contaminant concentration, duration, and areal extent: DAP = c×f×A (ppm × hr × mi2). The first step in developing a DAP is to plot daily contaminant dosages from an air monitoring network and to draw isopleths showing the dosage pattern. The second step is to determine the areas between isopleths and to multiply these areas by the applicable dosage levels. The final step is to sum the above partial products into a single number and to add a type designator indicating the geographic configuration of the dosage pattern. The DAP smog index is a realistic yardstick for measuring areawide smog experience. Reproducible results are obtained at low cost by using standard techniques. The standard DAP smog index is also useful for: analyzing air pollution episodes, estimating contaminant trends, and informing the public.  相似文献   

13.
Rice can be a major contributor to dietary arsenic exposure because of the relatively high total arsenic concentration compared to other grains, especially for people whose main staple is rice. This study employed in vitro gastrointestinal fluid digestion to determine bioaccessible or gastrointestinal fluid extractable arsenic concentration in rice. Thirty-one rice samples, of which 60 % were grown in the United States, were purchased from food stores in New York City. Total arsenic concentrations in these samples ranged from 0.090 ± 0.004 to 0.85 ± 0.03 mg/kg with a mean value of 0.275 ± 0.161 mg/kg (n = 31). Rice samples with relatively high total arsenic (>0.20 mg/kg, n = 18) were treated by in vitro artificial gastrointestinal fluid digestion, and the extractable arsenic ranged from 53 % to 102 %. The bioaccessibility of arsenic in rice decreases in the general order of extra long grain, long grain, long grain parboiled, to brown rices.  相似文献   

14.

Lead (Pb) is a highly neurotoxic chemical element known for reducing intelligence quotient (IQ) and promoting antisocial behavior in children and adolescents, while cadmium (Cd) is a carcinogenic bioaccumulative element. Both these metals are included in the priority pollutant list of the United States Environmental Protection Agency and in the WHO List of Chemicals of Major Public Health Concern, where contaminated foods and beverages are the most common pathways of exposure. The objective of this study was to determine total Cd and Pb levels in colored plastic utensils (cups, mugs, bowls, feeding bottles, and plates) for use by children and to measure the specific migration of these elements into beverages and foods. Total contaminant levels were determined using a handheld X-ray fluorescence analyzer. Specific migration tests were conducted using the simulant solutions acetic acid 3% (m/v) and water. Migration levels were determined by ICP-MS. Specific migration tests for Pb were also performed on commercially available samples (cola soft drink, orange juice, vinegar, and milk), with levels determined by graphite-furnace atomic absorption spectrometry (GF-AAS). A total of 674 utensils were analyzed in loco at major commercial centers in Greater São Paulo, of which 87 were purchased for containing Cd and Pb concentrations above permitted limits. Mean concentrations of the metals detected in the purchased utensils were 1110 ppm for Pb and 338 ppm for Cd. For specific migration assays, Pb levels were 187, 13, and 380 times above the permitted limit (0.01 mg.kg -1) for acetic acid, water, and orange juice, respectively. Cd levels were 50 and 2.4 times above the maximum permitted limit (0.005 mg.kg -1) for acetic acid and water, respectively. The districts where the utensils were purchased were grouped according to their social vulnerability index and compared using ANOVA. Pb levels were different between low and medium/high social vulnerability groups (p?=?0.006). The findings corroborate the initial hypothesis that these utensils constitute a major source of exposure to PTEs such as Cd and Pb, pointing to the need for stricter regulation and inspection by the Brazilian regulatory agencies.

  相似文献   

15.
The short-term effect of three broad spectrum fungicides on microbial activity, microbial biomass, soil ergosterol content, and phospholipid fatty acid (PLFA) profiles was studied. A silty clay loam soil was treated separately with captan, chlorothalonil and carbendazim at three different dosages of each fungicide. Chlorothalonil and carbendazim significantly altered soil microbial activity. However, changes in soil microbial biomass were only observed in soil treated with higher dosages of these fungicides. All dosages of fungicides significantly decreased fungal biomass as estimated by soil ergosterol content. PLFA analysis indicated that there was a shift in PLFA pattern. Higher dosages of all three fungicides decreased a straight-chain PLFA 22:0. In addition, soil treated with carbendazim increased cyclopropyl fatty acids. Compared to untreated soil, higher dosages of both captan and chlorothalonil affected PLFA 10Me 16:0, indicating that these fungicides can reduce actinomycetes population. Finally, our results suggest that application of both captan and chlorothalonil decreased Gram-positive to Gram-negative ratio.  相似文献   

16.
This paper describes the application of liquid chromatography-tandem mass spectrometry (LC/MS-MS) for analysis of residues of forchlorfenuron (CPPU), a new plant growth regulator, in watermelons, after a sample preparation step based on the buffered Quick, Easy, Cheap, Effective, Rugged and Safe extraction method. Analytical determinations were carried out in a triple quadrupole system fitted with an electrospray interphase operating in the positive ionisation mode (ESI+). Three simultaneous MS-MS transitions of the quasi-molecular ion m/z 248 (precursor ion) were monitored for data adquisition (248 > 129, 248 > 155, and 248 > 248), using the transition 248 > 129 for quantitation. Recovery studies on watermelons at levels of 1–200 μ g/kg, performing five replicates at each level and using bracketing single-level calibration with matrix-matched standards for quantitation, gave forchlorfenuron mean recoveries ranging from 82 to 106% with relative standard deviations (RSD) lower than 18%. The limit of determination was established at 1 μ g/kg. The method was applied to evaluate the persistence of forchlorfenuron residues in watermelons grown in plastic greenhouses, after applying an individual spray treatment to the flower ovary at the anthesis stage (45 μ g/flower and 60 μ g/flower for cv “Extazy” and cv “reina de corazones” watermelons, respectively). One month after treatment, 20 “Extazy” watermelon units (1.5–2 kg/unit) and 20 “Reina de corazones” watermelon units (4–5 kg/unit) were collected and analyzed individually. None of the samples contained forchlorfenuron residues higher than 1 μ g/kg.  相似文献   

17.

The white rot fungus Stereum hirsutum was used to degrade methoxychlor [2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethane] in culture and the degraded products were extensively determined. The estrogenic activity of the degraded products of methoxychlor was examined using cell proliferation and pS2 gene expression assays in MCF-7 cells. S. hirsutum showed high resistance to methoxychlor 100 ppm, and the mycelial growth was fully completed within 8 days of incubation at 30°C. Methoxychlor in liquid culture medium was gradually converted into 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethane, 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethylene, 2-chloro-1,1-bis(4-methoxyphenyl) ethane, 2-chloro-1,1-bis(4-methoxyphenyl) ethylene, and 1,1-bis(4-methoxyphenyl)ethylene, indicating that methoxychlor is dominantly degraded by dechlorination and dehydrogenation. MCF-7 cells were demonstrated to proliferate actively at the 10?5 M concentration of methoxychlor. However, cell proliferation was significantly inhibited by the incubation with methoxychlor culture media containing S. hirsutum. In addition, the expression level of pS2 mRNA was increased at the concentration (10?5 M) of methoxychlor. The reductive effect of S. hirsutum for methoxychlor was clear but not significant as in the proliferation assay.  相似文献   

18.
耐低温贫营养好氧反硝化菌群脱氮特性及安全性   总被引:1,自引:0,他引:1  
针对微污染水体强化原位生物脱氮技术同时面临低温、贫营养及好氧问题,对实验室已分离筛选的贫营养好氧反硝化菌和耐低温好氧反硝化菌进行菌源重组,构建出高效耐低温贫营养好氧脱氮功能菌群T1(Y3+F3+H8)和T2(Y3+F4)。研究不同投菌量条件下菌群的脱氮特性,结果表明,投菌量对T1脱氮效果有一定影响,0.1、0.2和1.0 mg/L投量对NO3--N去除率为71%、91%和100%,总氮去除率为56%、34%和52%;T2菌群,当投量为0.2 mg/L时,对NO3--N、总氮去除率最大可达66%和59.48%。对菌群T1、T2进行生物安全性分析,采用次氯酸钠进行消毒,其生物灭活率均达到99.9%以上。  相似文献   

19.
ABSTRACT

A laboratory thermal desorption apparatus was used to measure emissions from a number of nominally identical photocopier toners—manufactured to meet the specifications of one specific model copier—when these toners were heated to fuser temperature (180-200 °C). The objective was to assess how potential volatile organic compound (VOC) emissions from the toner for a given copier can vary, depending upon the production run and the supplier. Tests were performed on a series of toner (and associated raw polymer feedstock) samples obtained directly from a toner manufacturer, representing two production runs using a nonvented extrusion process, and on toner cartridges purchased from two local retailers, representing three different production lots (histories unknown). The results showed that the retailer toners consistently had up to 350% higher emissions of some major compounds (expressed as |ig of compound emit-ted/g of toner), and up to 100% lower emissions of others, relative to the manufacturer toners (p ≤ 0.01). The manufacturer toners from one production run had emissions of certain compounds, and of total VOCs, that were modestly higher (13-18%) than those from the other run (p ≤ 0.01). The emission differences between the retailer and manufacturer toners are probably due to differences  相似文献   

20.
不同生育期美人蕉-微生物修复富营养化水体   总被引:1,自引:0,他引:1  
生物修复水体富营养化,尤其是植物和微生物联合修复为目前水体富营养化治理方面的研究热点。不同生育期植物和微生物联合修复鲜见报道。研究不同生育期美人蕉和固定化微生物对富营养化水体的联合修复作用。结果表明,营养生长期和开花期美人蕉-微生物组处理前3天,富营养化水体中不同形态氮和磷浓度快速下降,用于美人蕉生长发育。从富营养化水体氮去除效果来看,营养生长期美人蕉-微生物联合处理去除效果略好于开花期,对磷的去除效果相反。美人蕉吸收氮元素为营养器官利用,其营养器官全氮增长量与生殖器官(花)形成显著差异(P<0.05)。花是美人蕉全磷含量最高、全磷增长量最高的器官,其全磷含量和全磷增长量与营养器官均形成显著差异(P<0.05)。实验结果表明,不同生育期美人蕉-微生物联合处理对氮和磷的吸收利用存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号