首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
Sources and concentrations of indoor air pollutants and aeroallergens were evaluated in the arid Southwest community of Tucson, Arizona. One major purpose was to appraise the interaction of indoor and outdoor human exposures. A rough time budget study showed that 74% of adults spent 75% or more of their time in some indoor environment. Outdoor and indoor concentrations of TSP, RSP, CO, O3 and aeroallergens were measured for 41 detached dwellings. Small area and basin monitoring occurred for TSP, CO, NO2, O3 and aeroallergens; ambient TSP frequently exceeds NAAQS and both CO and O3 do occasionally. Indoor TSP and RSP were lower than outdoors and were of a different composition. Outdoor infiltration falls rapidly for particles and pollen, related to distance Indoors. CO was low and O3 was very low indoors. TSP and RSP correlated significantly with tobacco smoking and CO correlated with gas stove usage. Temperature varied minimally indoors and relative humidity indoors was similar to outdoor readings In this climate. It was concluded that better particle characterization and better estimates of total exposure are required.  相似文献   

2.
Recent research has demonstrated that nitrogen oxides are transformed to nitrogen acids in indoor environments, and that significant concentrations of nitrous acid are present in indoor air. The purpose of the study reported in this paper has been to investigate the sources, chemical transformations and lifetimes of nitrogen oxides and nitrogen acids under the conditions existing in buildings. An unoccupied single family residence was instrumented for monitoring of NO, NO2, NOy, MONO, HNO3, CO, temperature, relative humidity, and air exchange rate. For some experiments, NO2 and HONO were injected into the house to determine their removal rates and lifetimes. Other experiments investigated the emissions and transformations of nitrogen species from unvented natural gas appliances. We determined that HONO is formed by both direct emissions from combustion processes and reaction of NO2 with surfaces present indoors. Equilibrium considerations influence the relative contributions of these two sources to the indoor burden of HONO. We determined that the lifetimes of trace nitrogen species varied in the order NO ~ HONO > NO2 >HNO3. The lifetimes with respect to reactive processes are on the order of hours for NO and HONO, about an hour for NO2, and 30 minutes or less for HNO3. The rapid removal of NO2 and long lifetime of HONO suggest that HONO may represent a significant fraction of the oxidized nitrogen burden in indoor air.  相似文献   

3.
In developed nations people spend about 90% of their time indoors. The relationship between indoor and outdoor air pollution levels is important for the understanding of the health effects of outdoor air pollution. Although other studies describe both the outdoor and indoor atmospheric environment, few excluded a priori major indoor sources, measured the air exchange rate, included more than one micro-environment and included the presence of human activity. PM2.5, soot, NO2 and the air exchange rate were measured during winter and summer indoors and outdoors at 18 homes (mostly apartments) of 18 children (6–11-years-old) and also at the six schools and 10 pre-schools that the children attended. The three types of indoor environments were free of environmental tobacco smoke and gas appliances, as the aim was to asses to what extent PM2.5, soot and NO2 infiltrate from outdoors to indoors. The median indoor and outdoor PM2.5 levels were 8.4 μg m?3 and 9.3 μg m?3, respectively. The median indoor levels for soot and NO2 were 0.66 m?1 × 10?5 and 10.0 μg m?3, respectively. The respective outdoor levels were 0.96 m?1 × 10?5 and 12.4 μg m?3. The median indoor/outdoor (I/O) ratios were 0.93, 0.76 and 0.92 for PM2.5, soot and NO2, respectively. Their infiltration factors were influenced by the micro-environment, ventilation type and air exchange rate, with aggregated values of 0.25, 0.55 and 0.64, respectively. Indoor and outdoor NO2 levels were strongly associated (R2 = 0.71), followed by soot (R2 = 0.50) and PM2.5 (R2 = 0.16). In Stockholm, the three major indoor environments occupied by children offer little protection against combustion-related particles and gases in the outdoor air. Outdoor PM2.5 seems to infiltrate less, but indoor sources compensate.  相似文献   

4.
5.
ABSTRACT

The air quality in five Finnish ice arenas with different volumes, ventilation systems, and resurfacer power sources (propane, gasoline, electric) was monitored during a usual training evening and a standardized, simulated ice hockey game. The measurements included continuous recording of carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2) concentrations, and sampling and analysis of volatile organic compounds (VOCs). Emissions from the ice resurfacers with combustion engines caused indoor air quality problems in all ice arenas. The highest 1-hour average CO and NO2 concentrations ranged from 20 to 33 mg/m3 (17 to 29 ppm) and 270 to 7440 µg/m3 (0.14 to 3.96 ppm), respectively. The 3-hour total VOC concentrations ranged from 150 to 1200 µg/m3. The highest CO and VOC levels were measured in the arena in which a gasoline-fueled resurfacer was used. The highest NO2 levels were measured in small ice arenas with propane-fueled ice resurfacers and insufficient ventilation.

In these arenas, the indoor NO2 levels were about 100 times the levels measured in ambient outdoor air, and the highest 1-hour concentrations were about 20 times the national and World Health Organization (WHO) health-based air quality guidelines. The air quality was fully acceptable only in the arena with an electric resurfacer. The present study showed that the air quality problems of indoor ice arenas may vary with the fuel type of resurfacer and the volume and ventilation of arena building. It also confirmed that there are severe air quality problems in Finnish ice arenas similar to those previously described in North America.  相似文献   

6.
Fine particulate matter (PM2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM2.5 infiltration efficiencies (Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (~65%) of the indoor PM2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM2.5-levoglucosan correlations (r ≤ 0.19) suggested that wood smoke was not a major indoor PM2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.  相似文献   

7.
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air conducted indoor and outdoor residential sampling of nitrogen dioxide (NO2), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This participant-based methodology was subsequently adapted for use in the Vanguard phase of the U.S. National Children’s Study. The current paper examines residential indoor and outdoor concentrations of these pollutant species among health study participants in Detroit, Michigan.Pollutants measured under MICA-Air agreed well with other studies and continuous monitoring data collected in Detroit. For example, NO2 and BTEX concentrations reported for other Detroit area monitoring were generally within 10–15% of indoor and outdoor concentrations measured in MICA-Air households. Outdoor NO2 concentrations were typically higher than indoor NO2 concentration among MICA-Air homes, with a median indoor/outdoor (I/O) ratio of 0.6 in homes that were not impacted by environmental tobacco smoke (ETS) during air sampling. Indoor concentrations generally exceeded outdoor concentrations for VOC and PAH species measured among non-ETS homes in the study. I/O ratios for BTEX species (benzene, toluene, ethylbenzene, and m/p- and o-xylene) ranged from 1.2 for benzene to 3.1 for toluene. Outdoor NO2 concentrations were approximately 4.5 ppb higher on weekdays versus weekends. As expected, I/O ratios pollutants were generally higher for homes impacted by ETS.These findings suggest that participant-based air sampling can provide a cost-effective alternative to technician-based approaches for assessing indoor and outdoor residential air pollution in community health studies. We also introduced a technique for estimating daily concentrations at each home by weighting 2- and 7-day integrated concentrations using continuous measurements from regulatory monitoring sites. This approach may be applied to estimate short-term daily or hourly pollutant concentrations in future health studies.  相似文献   

8.
Simultaneous measurements were made of the concentrations of NO, NO2, and CO inside and outside of a building. The building is located in the Los Angeles area, which is heavily polluted by photochemical smog, and the experiments were conducted at a time of the year when the pollutants in question tend to be high. The results shows that there is a direct relationship between the inside and outside concentrations, and that the phase lag between the concentrations depends principally on the ratio of the building volume to the ventilation rate. Although the outside concentrations of the pollutants in question did not follow the same pattern every day, peak concentrations seemed to be related to “rush-hour” traffic. By reducing ventilation rates during these periods, it may be possible to reduce the concentration peaks inside of the building. The building involved in the current study was not located in the immediate vicinity of heavy traffic, and the indoor concentrations of NO, NO2, and CO did not appear to be very severe when compared to those defined by present air quality standards. Finally, the results support the belief that NO and O3 do not co-exist indoors except in very small quantities.  相似文献   

9.
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States–Mexico border. During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14–30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 μg m?3 and biomass stoves 163 to 504 μg m?3. Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 μg m?3). The former is evident in the median and range of daytime PM values (median PM3: 250 μg m?3, maximum: 9411 μg m?3), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 μg m?3, maximum: 10,846 μg m?3). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 μg m?3).
Implications:Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States–Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.  相似文献   

10.
This study evaluates effects of good burning practice and correct installation and management of wood heaters on indoor air pollution in an Italian rural area. The same study attests the role of education in mitigating wood smoke pollution. In August 2007 and winters of 2007 and 2008, in a little mountain village of Liguria Apennines (Italy), indoor and outdoor benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations were measured in nine wood-heated houses. During the first sampling, several mistakes in heating plant installations and management were found in all houses. Indoor BTEX concentrations increased during use of wood burning. Low toluene/benzene ratios were in agreement with wood smoke as main indoor and outdoor pollution source. Other BTEX sources were identified as the indoor use of solvents and paints and incense burning. Results obtained during 2007 were presented and discussed with homeowners. Following this preventive intervention, in the second winter sampling all indoor BTEX concentrations decreased, in spite of the colder outdoor air temperatures. Information provided to families has induced the adoption of effective good practices in stoves and fire management. These results highlight the importance of education, supported by reliable data on air pollution, as an effective method to reduce wood smoke exposures.
Implications:Information about burning practices and correct installation and management of wood heaters, supported by reliable data on indoor and outdoor pollution, may help to identify and remove indoor pollution sources. This can be an effective strategy in mitigate wood smoke pollution.  相似文献   

11.
A detailed chemical box model has been constructed based on a comprehensive chemical mechanism (the Master Chemical Mechanism) to investigate indoor air chemistry in a typical urban residence in the UK. Unlike previous modelling studies of indoor air chemistry, the mechanism adopted contains no simplifications such as lumping or the use of surrogate species, allowing more insight into indoor air chemistry than previously possible. The chemical mechanism, which has been modified to include the degradation reactions of key indoor air pollutants, contains around 15,400 reactions and 4700 species. The results show a predicted indoor OH radical concentration up to 4.0×105 molecule cm−3, only a factor of 10–20 less than typically observed outdoors and sufficient for significant chemical cycling to take place. Concentrations of PAN-type species and organic nitrates are found to be important indoors, reaching concentrations of a few ppb. Sensitivity tests highlight that the most crucial parameters for modelling the concentration of OH are the light-intensity levels and the air exchange rate. Outdoor concentrations of O3 and NOX are also important in determining radical concentrations indoors. The reactions of ozone with alkenes and monoterpenes play a major role in producing new radicals, unlike outdoors where photolysis reactions are pivotal radical initiators. In terms of radical propagation, the reaction of HO2 with NO has the most profound influence on OH concentrations indoors. Cycling between OH and RO2 is dominated by reaction with the monoterpene species, whilst alcohols play a major role in converting OH to HO2. Surprisingly, the absolute reaction rates are similar to those observed outdoors in a suburban environment in the UK during the summer. The results from this study highlight the importance of tailoring a model for its particular location and the need for future indoor air measurements of radical species, nitrated species such as PANs and organic nitrates, photolysis rates of key species over the range of wavelengths observed indoors and concurrent measurements of outdoor air pollutant concentrations.  相似文献   

12.
Extensive data on residential indoor and outdoor NO2 levels have been collected in a limited number of U.S. locations. To date, researchers have analyzed these data sets individually, but have not analyzed them in the aggregate. Results have not, therefore, been suitable for application in a nationwide exposure assessment. This paper presents an analysis of indoor and outdoor NO2 field measurements from five U.S. metropolitan areas for homes with gas-fueled ranges and discusses potential applications of the results. Using linear regression analysis, the relationship between indoor NO2 and various predictor variables was explored. Results indicated that ambient NO2 levels alone explain an estimated 37 percent of the variability in indoor NO2 levels, that the relationship between indoor and outdoor NO2 concentrations differs significantly from summer to winter months, and that homes with range pilot lights have indoor levels approximately 7 ppb greater than homes without pilot lights. A logistic regression model which predicts the distribution of indoor NO2 levels based on ambient NO2 concentrations was developed. Estimation and testing of the logistic model indicated good model performance. The model is particularly useful for addressing policy-oriented questions that involve the concept of "acceptable" threshold levels for human exposure to NO2.  相似文献   

13.
Indoor particulate matter samples were collected in 17 homes in an urban area in Alexandria during the summer season. During air measurement in all selected homes, parallel outdoor air samples were taken in the balconies of the domestic residences. It was found that the mean indoor PM2.5 and PM10 (particulate matter with an aerodynamic diameter ≤2.5 and ≤10 μm, respectively) concentrations were 53.5 ± 15.2 and 77.2 ± 15.1 µg/m3, respectively. The corresponding mean outdoor levels were 66.2 ± 16.5 and 123.8 ± 32.1 µg/m3, respectively. PM2.5 concentrations accounted, on average, for 68.8 ± 12.8% of the total PM10 concentrations indoors, whereas PM2.5 contributed to 53.7 ± 4.9% of the total outdoor PM10 concentrations. The median indoor/outdoor mass concentration (I/O) ratios were 0.81 (range: 0.43–1.45) and 0.65 (range: 0.4–1.07) for PM2.5 and PM10, respectively. Only four homes were found with I/O ratios above 1, indicating significant contribution from indoor sources. Poor correlation was seen between the indoor PM10 and PM2.5 levels and the corresponding outdoor concentrations. PM10 levels were significantly correlated with PM2.5 loadings indoors and outdoors and this might be related to PM10 and PM2.5 originating from similar particulate matter emission sources. Smoking, cooking using gas stoves, and cleaning were the major indoor sources contributed to elevated indoor levels of PM10 and PM2.5.

Implications: The current study presents results of the first PM2.5 and PM10 study in homes located in the city of Alexandria, Egypt. Scarce data are available on indoor air quality in Egypt. Poor correlation was seen between the indoor and outdoor particulate matter concentrations. Indoor sources such as smoking, cooking, and cleaning were found to be the major contributors to elevated indoor levels of PM10 and PM2.5.  相似文献   

14.
Abstract

Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles–area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3 ?]) components, and particle sizes ranging between 0.02 and 10 μm. FINF was highest for BC (median = 0.84) and lowest for NO3 ? (median = 0.18). The low FINF for NO3 ? was likely because of volatilization of NO3 ? particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3 ?, reflecting the contributions of both particle components to PM2.5. FINF varied with particle size, air-exchange rate, and outdoor NO3 ? concentrations. The FINF for particles between 0.7 and 2 μm in size was considerably lower during periods of high as compared with low outdoor NO3 ? concentrations, suggesting that outdoor NO3 ? particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas with high concentrations of NH4NO3 and other volatile particles.  相似文献   

15.
Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.  相似文献   

16.
ABSTRACT

The present study investigated indoor and outdoor concentrations of two particulate matter size fractions (PM10 and PM2.5) and CO2 in 20 urban homes ventilated naturally and located in one congested residential and commercial area in the city of Alexandria, Egypt. The results indicate that the daily mean PM2.5 concentrations measured in the ambient air, living rooms, and kitchens of all sampling sites exceeded the WHO guideline by 100%, 65%, and 95%, respectively. The daily mean outdoor and indoor PM10 levels in all sampling sites were found to exceed the WHO guideline by 100% and 80%, respectively. The indoor PM10 and PM2.5 concentrations were significantly correlated with their corresponding outdoor levels, as natural ventilation through opening doors and windows allowed direct transfer of outdoor airborne particles into the indoor air. Most of the kitchens investigated had higher indoor concentrations of PM2.5 and CO2 than in living rooms. The elevated levels of PM2.5 and CO2 in domestic kitchens were probably related to inadequate ventilation. The current study attempted to understand the sources and the various indoor and outdoor factors that affect indoor PM10, PM2.5 and CO2 concentrations. Several domestic activities, such as smoking, cooking, and cleaning, were found to constitute important sources of indoor air pollution. The indoor pollution caused by PM2.5 was also found to be more serious in the domestic kitchens than in the living rooms and the results suggest that exposure to PM2.5 is high and highlights the need for more effective control measures.

Implications: Indoor air pollution is a complex problem that involves many determinant factors. Understanding the relationships and the influence of various indoor and outdoor factors on indoor air quality is very important to prioritize control measures and mitigation action plans. There is currently a lack of research studies in Egypt to investigate determinant factors controlling indoor air quality for urban homes. The present study characterizes the indoor and outdoor concentrations of PM10, PM2.5, and CO2 in residential buildings in Alexandria city. The study also determines the indoor and outdoor factors which influence the indoor PM and CO2 concentrations as well as it evaluates the potential indoor sources in the selected homes. This research will help in the development of future indoor air quality standards for Egypt.  相似文献   

17.
Bushfires, prescribed burns, and residential wood burning are significant sources of fine particles (aerodynamic diameter <2.5 μm; PM2.5) affecting the health and well-being of many communities. Despite the lack of evidence, a common public health recommendation is to remain indoors, assuming that the home provides a protective barrier against ambient PM2.5. The study aimed to assess to what extent houses provide protection against peak concentrations of outdoor PM2.5 and whether remaining indoors is an effective way of reducing exposure to PM2.5. The effectiveness of this strategy was evaluated by conducting simultaneous week-long indoor and outdoor measurements of PM2.5 at 21 residences in regional areas of Victoria, Australia. During smoke plume events, remaining indoors protected residents from peak outdoor PM2.5 concentrations, but the level of protection was highly variable, ranging from 12% to 76%. Housing stock (e.g., age of the house) and ventilation (e.g., having windows/doors open or closed) played a significant role in the infiltration of outdoor PM2.5 indoors. The results also showed that leaving windows and doors closed once the smoke plume abates trapped PM2.5 indoors and increased indoor exposure to PM2.5. Furthermore, for approximately 50% of households, indoor sources such as cooking activities, smoking, and burning candles or incense contributed significantly to indoor PM2.5.

Implications: Smoke from biomass burning sources can significantly impact on communities. Remaining indoors with windows and doors closed is a common recommendation by health authorities to minimize exposures to peak concentrations of fine particles during smoke plume events. Findings from this study have shown that the protection from fine particles in biomass burning smoke is highly variable among houses, with information on housing age and ventilation status providing an approximate assessment on the protection of a house. Leaving windows closed once a smoke plume abates traps particles indoors and increases exposures.  相似文献   


18.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in the indoor environments of 15 urban homes and their adjacent outdoor environments in Alexandria, Egypt, during the spring time. Indoor and outdoor carbon dioxide (CO2) levels were also measured concurrently. The results showed that indoor and outdoor PM2.5 concentrations in the 15 sites, with daily averages of 45.5 ± 11.1 and 47.3 ± 12.9 µg/m3, respectively, were significantly higher than the ambient 24-hr PM2.5 standard of 35 µg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The indoor PM2.5 and CO2 levels were correlated with the corresponding outdoor levels, demonstrating that outdoor convection and infiltration could lead to direct transportation indoors. Ventilation rates were also measured in the selected residences and ranged from 1.6 to 4.5 hr?1 with median value of 3.3 hr?1. The indoor/outdoor (I/O) ratios of the monitored homes varied from 0.73 to 1.65 with average value of 0.99 ± 0.26 for PM2.5, whereas those for CO2 ranged from 1.13 to 1.66 with average value of 1.41 ± 0.15. Indoor sources and personal activities, including smoking and cooking, were found to significantly influence indoor levels.

Implications: Few studies on indoor air quality were carried out in Egypt, and the scarce data resulted from such studies do not allow accurate assessment of the current situation to take necessary preventive actions. The current research investigates indoor levels of PM2.5 and CO2 in a number of homes located in the city of Alexandria as well as the potential contribution from both indoor and outdoor sources. The study draws attention of policymakers to the importance of the establishment of national indoor air quality standards to protect human health and control air pollution in different indoor environments.  相似文献   

19.
Abstract

The impact of outdoor and indoor pollution sources on indoor air quality in Santiago, Chile was investigated. Toward this end, 16 homes were sampled in four sessions. Each session included an outdoor site and four homes using different unvented space heaters (electric or central heating, compressed natural gas, liquefied petroleum gas, and kerosene). Average outdoor fine particulate matter (PM2.5) concentrations were very high (55.9 μg·m-3), and a large fraction of these particles penetrated indoors. PM2.5 and several PM2.5 components (including sulfate, elemental carbon, organic carbon, metals, and polycyclic aromatic hydrocarbons) were elevated in homes using kerosene heaters. Nitrogen dioxide (NO2) and ultrafine particles (UFPs) were higher in homes with combustion heaters as compared with those with electric heaters or central heating. A regression model was used to assess the effect of heater use on continuous indoor PM2.5 concentrations when windows were closed. The model found an impact only for kerosene heaters (45.8 μg m-3).  相似文献   

20.
A dynamic multi-compartment computer model has been developed to describe the physical processes determining indoor pollutant concentrations as a function of outdoor concentrations, indoor emission rates and building characteristics. The model has been parameterised for typical UK homes and workplaces and linked to a time-activity model to calculate exposures for a representative homemaker, schoolchild and office worker, with respect to NO2. The estimates of population exposures, for selected urban and rural sites, are expressed in terms of annual means and frequency of hours in which air quality standards are exceeded. The annual mean exposures are estimated to fall within the range of 5–21 ppb for homes with no source, and 21–27 ppb for homes with gas cooking, varying across sites and population groups. The contribution of outdoor exposure to annual mean NO2 exposure varied from 5 to 24%, that of indoor penetration of outdoor air from 17 to 86% and that of gas cooking from 0 to 78%. The frequency of exposure to 1 h mean concentrations above 150 ppb was very low, except for people cooking with gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号