首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of ammonia in the fuel on NOx emissions was investigated through laboratory experiments and field burner tests. It was found that the degree of conversion of pm-monia to NOx was a strong function of excess air, ammonia content in the fuel, and of the degree of mixing in the flame. In premixed laboratory flames concentrations of NOx above the peak equilibrium amounts were produced. In furnace diffusion flames the conversion to NOx was much less. At substoichiometric air-fuel ratios all the ammonia appears to pyrolize, forming N2, and only very little NOx. Several methods for burning ammonia to produce low NOx emissions were investigated.  相似文献   

2.
Speciated hydrocarbon emissions data have been collected for six single-component fuels run in a laboratory pulse flame combustor (PFC). The six fuels include n-heptane, isooctane (2, 2, 4-trimethylpentane), cyclohexane, 1-hexene, toluene, and methyl-t-butyl ether (MTBE: an oxygenated fuel extender). Combustion of non-aromatic fuels in the PFC (at a fuel/air equivalence ratio of Φ = 1.02) produced low levels of unburned fuel and high yields of methane and olefins (> 75 percent combined) irrespective of the molecular structure of the fuel. In contrast, hydrocarbon emissions from toluene combustion in the PFC were comprised predominantly of unburned fuel (72 percent). With the PFC, low levels of 1, 3-butadiene (0.3-1.8 percent) were observed from all the fuels except MTBE, for which no measurable level (<0.2 percent) was detected; low levels of benzene were observed from isooctane, heptane, and 1-hexene, but significant levels (9 percent) from cyclohexane and toluene. No measurable amount of benzene (< 0.2 percent) was observed in the MTBE exhaust.

For isooctane and toluene the speciated hydrocarbon emissions from a spark-ignited (SI) single-cylinder engine were also determined. HC emissions from the SI engine contained the same species as observed from the PFC, although the relative composition was different. For the non-aromatic fuel isooctane, unburned fuel represented a larger fraction (50 percent) of the HC emissions when run in the engine. HC emissions from toluene combustion in the engine were similar to those from the PFC.  相似文献   

3.
Abstract

A nontrivial portion of heavy-duty vehicle emissions of NOx and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them accurately, and little quantitative data exist to evaluate the relative effectiveness of various policies. The objectives of this study were to quantify the effect of accessory loading and engine speed on idling emissions from a properly functioning, modern, heavy-duty diesel truck and to compare these results with data from earlier model year vehicles. It was found that emissions during idling varied greatly as a function of engine model year, engine speed, and accessory load conditions. For the 1999 model year Class 8 truck tested, raising the engine speed from 600 to 1050 rpm and turning on the air conditioning resulted in a 2.5-fold increase in NOx emissions in grams per hour, a 2-fold increase in CO2 emissions, and a 5-fold increase in CO emissions while idling. On a grams per gallon fuel basis, NOx emissions while idling were approximately twice as high as those at 55 mph. The CO2 emissions at the two conditions were closer. The NOx emissions from the 1999 truck while idling with air conditioning running were slightly more than those of two 1990 model year trucks under equivalent conditions, and the hydrocarbon (HC) and CO emissions were significantly lower. It was found that the NOx emissions used in the California Air Resources Board’s (CARB) EMFAC2000 and the U.S. Environmental Protection Agency’s (EPA) MOBILE5b emissions inventory models were lower than those measured in all of the idling conditions tested on the 1999 truck.  相似文献   

4.
Abstract

Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted [~20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted ~35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idleCO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased by ~100% and 70%, respectively. Six Detroit Diesel Corp. (DDC) Series 60 engines in engine test cell were found to emit less CO, NOx, and PM emissions and consumed fuel at only 75%of the level found in the chassis dynamometer data. This is because fan and compressor loads were absent in the engine test cell.  相似文献   

5.
Experiments were conducted on a four-cylinder direct-injection diesel engine with part of the engine load taken up by fumigation methanol injected into the air intake of each cylinder to investigate the regulated and unregulated gaseous emissions and particulate emission of the engine under five engine loads at an engine speed of 1920 rev min?1. The fumigation methanol was injected to top up 10%, 20% and 30% of the engine load under different engine operating conditions.The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation methanol; but at high engine loads, the BTE is not significantly affected by fumigation methanol. The fumigation methanol results in significant increase in hydrocarbon (HC), carbon monoxide (CO) and nitrogen dioxide (NO2) emissions, but decrease in nitrogen oxides (NOx). For the unregulated gaseous emissions, unburned methanol, formaldehyde and BTX (benzene, toluene and xylene) emissions increase but ethyne, ethene and 1,3-butadiene emissions decrease. Particulate mass and number concentrations also decrease with increase in fumigation methanol. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics, when the exhaust gas temperature is sufficiently high.  相似文献   

6.
The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number, and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC??50 and??70 °CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits.

Implications: NOx and particle emissions are dominant emissions of diesel engines and vehicles. New, biobased paraffinic fuels and modern engine technologies have been reported to lower both of these emissions. In this study, even further reductions were achieved with engine valve adjustment combined with novel hydrotreated vegetable oil (HVO) diesel fuel. This study shows that new paraffinic fuels offer further possibilities to reduce engine exhaust emissions to meet the future emission limits.

Supplementary Materials: Supplementary materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a complete list of analysed PAH compounds.  相似文献   

7.
Emissions from diesel-powered construction equipment are an important source of nitrogen oxides (NOx) and particulate matter (PM). A new emission inventory for construction equipment emissions is developed based on surveys of diesel fuel use; the revised inventory is compared to current emission inventories. California's OFFROAD model estimates are 4.5 and 3.1 times greater, for NOx and PM respectively, than the fuel-based estimates developed here. The most relevant uncertainties are the overall amount of construction activity/diesel fuel use, exhaust emission factors for PM and NOx, and the spatial allocation of emissions to county level and finer spatial scales. Construction permit data were used in this study to estimate spatial distributions of emissions; the resulting distribution is well correlated with population growth. An air quality model was used to assess the impacts of revised emission estimates. Increases of up to 15 ppb in predicted peak ozone concentrations were found in southern California. Elemental carbon and fine particle mass concentrations were in better agreement with observations using revised emission estimates, whereas negative bias in predictions of ambient NOx concentrations increased.  相似文献   

8.
Flex fuel vehicles (FFVs) typically operate on gasoline or E85, an 85%/15% volume blend of ethanol and gasoline. Differences in FFV fuel use and tailpipe emission rates are quantified for E85 versus gasoline based on real-world measurements of five FFVs with a portable emissions measurement system (PEMS), supplemented chassis dynamometer data, and estimates from the Motor Vehicle Emission Simulator (MOVES) model. Because of inter-vehicle variability, an individual FFV may have higher nitrogen oxide (NOx) or carbon monoxide (CO) emission rates on E85 versus gasoline, even though average rates are lower. Based on PEMS data, the comparison of tailpipe emission rates for E85 versus gasoline is sensitive to vehicle-specific power (VSP). For example, although CO emission rates are lower for all VSP modes, they are proportionally lowest at higher VSP. Driving cycles with high power demand are more advantageous with respect to CO emissions, but less advantageous for NOx. Chassis dynamometer data are available for 121 FFVs at 50,000 useful life miles. Based on the dynamometer data, the average difference in tailpipe emissions for E85 versus gasoline is ?23% for NOx, ?30% for CO, and no significant difference for hydrocarbons (HC). To account for both the fuel cycle and tailpipe emissions from the vehicle, a life cycle inventory was conducted. Although tailpipe NOx emissions are lower for E85 versus gasoline for FFVs and thus benefit areas where the vehicles operate, the life cycle NOx emissions are higher because the NOx emissions generated during fuel production are higher. The fuel production emissions take place typically in rural areas. Although there are not significant differences in the total HC emissions, there are differences in HC speciation. The net effect of lower tailpipe NOx emissions and differences in HC speciation on ozone formation should be further evaluated.

Implications: Reported comparisons of flex fuel vehicle (FFV) tailpipe emission rates for E85 versus gasoline have been inconsistent. To date, this is the most comprehensive evaluation of available and new data. The large range of inter-vehicle variability illustrates why prior studies based on small sample sizes led to apparently contradictory findings. E85 leads to significant reductions in tailpipe nitrogen oxide (NOx) and carbon monoxide (CO) emission rates compared with gasoline, indicating a potential benefit for ozone air quality management in NOx-limited areas. The comparison of FFV tailpipe emissions between E85 and gasoline is sensitive to power demand and driving cycles.  相似文献   

9.
In this paper we study the transient ozone generation process in polluted urban areas, using a simplified set of chemical reactions for the NOx and hydrocarbon photolysis. We obtained a reduced kinetic mechanism and it is solved using the boundary layer theory due to the appearance of two time scales in the problem associated with the photo-chemical reactions of the NO2 and unburned fuel, respectively. Assuming a temporal addition of ozone precursor species, we obtained in closed form, the temporal evolution of the ozone concentration as a function of the physico-chemical parameters.  相似文献   

10.
The body of information presented in this paper is directed to those individuals concerned with the effect of urban pollution on downwind areas. In the absence of any evidence, it has been widely assumed that increasing NO x emissions have caused oxidant levels to increase downwind of Los Angeles, i.e., Riverside and San Bernardino. This smog chamber study simulated pollutant transport from Los Angeles to the downwind areas by irradiating a typical Los Angeles hydrocarbon/NO x mixture for extended periods of time. The smog chamber experiments were extended to 22 hours to obtain an integrated light intensity equal to that which occurs in the Los Angeles area. The effects of variations of nitrogen oxide emissions on an aged air mass were examined. The results show that downwind oxidant levels are only slightly affected by large changes in NO x emissions. However, it is clear that reduced nitrogen oxide emissions will lead to an increase in oxidant in downtown Los Angeles.  相似文献   

11.
Tailpipe and evaporative emissions from three pre-1985 passenger motor vehicles operating on an oxygenated blend fuel and on a nonoxygenated base fuel were characterized. Emission data were collected for vehicles operating over the Federal Test Procedure at 40,75, and 90°F to simulate ambient driving conditions. The two fuels tested were a commercial summer grade regular gasoline (the nonoxygenated base fuel) and an oxygenated fuel containing 9.5 percent methyl tert-butyl ether (MTBE), more olefins, and fewer aromatics than the base fuel. The emissions measured were total hydrocarbons (THCs), speciated hydrocarbons, speciated aldehydes, carbon monoxide (CO), oxides of nitrogen (NOx), benzene, and 1,3-butadiene.

This study showed no pattern of tailpipe regulated emission reduction when oxygenated fuel was used. Tailpipe emissions from the 1984 Buick Century without a catalyst and the 1977 Mustang with catalyst decreased with the MTBE fuel. However, emissions from the 1984 Buick Century and the 1980 Chevrolet Citation, both fitted with catalysts increased. The vehicles emitted more 1,3- butadiene and, in general, more NOx when operated with the base fuel.

THC, CO, benzene, and 1,3-butadiene emissions from both fuels and all vehicles, in general, decreased with increasing test temperature, whereas NOx emissions, in general, increased with increasing test temperature. Formaldehyde, acetaldehyde, and total aldehydes also showed a decrease in emissions as test temperature increased. More formaldehyde was emitted when the MTBE fuel was used.

Evaporative, diurnal, and hot soak emissions from the base fuel were greater than those from the MTBE fuel. The evaporated emissions from both fuels increased with increasing test temperatures. Diurnal data indicate that canister conditioning (bringing the evaporative charcoal canister to equilibrium) is required before testing.  相似文献   

12.
An aircraft-based measurement campaign was conducted during the summer of 1996 in the vicinity of Toronto, Canada. The objective of the campaign was to assess the errors in a particular emission inventory used by three-dimensional air quality models. Measurements of NO2 and hydrocarbons were made both upwind and downwind of Toronto, on days with strong synoptic-scale flow from a west to northerly direction. The chemical composition of the background airmass on these days was typical of unpolluted continental air. Measurements have been compared with the output from an on-line air quality model (MC2-AQ) run at 5 km resolution and suggest that emissions of NOx from Toronto are well described in the emission database, though evidence that NOx emissions are underestimated for suburban regions surrounding Toronto was found. In general, no significant underestimation of hydrocarbon emissions was found, though emissions of the model propane species, which includes acetylene and benzene, was underestimated by at least a factor of two.  相似文献   

13.
Nitrogen oxides emissions in Asia during the period 1990–2020 due to anthropogenic activity are presented. These estimates are based on the RAINS-ASIA methodology (Foell et al., 1995, Acid Rain and Emission Reduction in Asia, World Bank), which includes a dynamic model for energy forecasts, and information on 6 energy sectors and 9 fuel types. The energy forecasts are combined with process emission factors to yield NOx emission estimates at the country level, the regional level, and on a 1 degree by 1 degree grid. In 1990 the total NOx emissions are estimated to be ∼19 Tg NO2, with China (43%), India (18%) and Japan (13%) accounting for 75% of the total. Emissions by fuel are dominated by burning of hard coal and emissions by economic activity are dominated by the power, transport, and industrial sectors. These new estimates of NOx emissions are compared with those published by Hameed and Dignon (1988, Atmospheric Environment 22, 441–449) and Akimoto and Narita (1994, Atmospheric Environment 28, 213–225). Future emissions under a no-further-control scenario are also presented. During the period 1990–2020 the NOx emissions increase by 350%, to ∼86 Tg NO2. The increase in NOx emissions by sector and end-use varies between countries, but in all countries this increase is strongest in the power and transport sectors. These results highlight the dynamic nature of energy use in Asia, and the need to take the rapid growth in NOx emissions in Asia into account in studies of air pollution and atmospheric chemistry.  相似文献   

14.
This study proposes an easy-to-apply method, the Total Life Cycle Emission Model (TLCEM), to calculate the total emissions from shipping and help ship management groups assess the impact on emissions caused by their capital investment or operation decisions. Using TLCEM, we present the total emissions of air pollutants and greenhouse gases (GHGs) during the 25-yr life cycle of 10 post-Panamax containerships under slow steaming conditions. The life cycle consists of steel production, shipbuilding, crude oil extraction and transportation, fuel refining, bunkering, and ship operation. We calculate total emissions from containerships and compare the effect of emission reduction by using various fuels. The results can be used to differentiate the emissions from various processes and to assess the effectiveness of various reduction approaches. Critical pollutants and GHGs emitted from each process are calculated. If the containerships use heavy fuel oil (HFO), emissions of CO2 total 2.79 million tonnes (Mt), accounting for 95.37% of total emissions, followed by NOx and SOx emissions,which account for 2.25% and 1.30%, respectively.The most significant emissions are from the operation of the ship and originate from the main engine (ME).When fuel is switched to 100% natural gas (NG), SOx, PM10, and CO2 emissions show remarkable reductions of 98.60%, 99.06%, and 21.70%, respectively. Determining the emission factor of each process is critical for estimating the total emissions. The estimated emission factors were compared with the values adopted by the International Maritime Organization (IMO).The proposed TLCEM may contribute to more accurate estimates of total life cycle emissions from global shipping.

Implications: We propose a total life cycle emissions model for 10 post-Panamax container ships. Using heavy fuel oil, emissions of CO2 total 2.79 Mt, accounting for approximately 95% of emissions, followed by NOx and SOx emissions. Using 100% natural gas, SOx, PM10, and CO2 emissions reduce by 98.6%, 99.1%, and 21.7%, respectively. NOx emissions increase by 1.14% when running a dual fuel engine at low load in natural gas mode.  相似文献   


15.
As an alternative and renewable fuel, biodiesel can effectively reduce diesel engine emissions, especially particulate matter and dry soot. However, the biodiesel effects on emissions may vary as the source fuel changes. In this paper, the performance of five methyl esters with different sources was studied: cottonseed methyl ester (CME), soybean methyl ester (SME), rapeseed methyl ester (RME), palm oil methyl ester (PME) and waste cooking oil methyl ester (WME). Total particulate matter (PM), dry soot (DS), non-soot fraction (NSF), nitrogen oxide (NOx), unburned hydrocarbon (HC), and carbon monoxide (CO) were investigated on a Cummins ISBe6 Euro III diesel engine and compared with a baseline diesel fuel. Results show that using different methyl esters results in large PM reductions ranging from 53% to 69%, which include the DS reduction ranging from 79% to 83%. Both oxygen content and viscosity could influence the DS emission. Higher oxygen content leads to less DS at high load while lower viscosity results in less DS at low load. NSF decreases consistently as cetane number increases except for PME. The cetane number could be responsible for the large NSF difference between different methyl esters.  相似文献   

16.
Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NOx), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO2), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NOx emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NOx from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO2) and ozone (O3) was lower for higher ethanol content in the fuel. In the U.S. car, NO2 and O3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality.

Implications: The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of its use, it is important to understand its effect on urban pollution. There is a controversy on whether there is a reduction or increase in PM emission when using ethanol blends. Primary emissions of THC, CO, CO2, NOx, and NMHC for both cars decreased as the fraction of ethanol in gasoline increased. Using a photochemical chamber, the authors have found a decrease in the formation of secondary particles and the time required to form secondary PM is longer when using higher ethanol blends.  相似文献   


17.
The effects of two alternative sources of animal fat-derived biodiesel feedstock on CO2, CO, NOx tailpipe emissions as well as fuel consumption were investigated. Biodiesel blends were produced from chicken and swine fat waste (FW-1) or floating fat (FW-2) collected from slaughterhouse wastewater treatment processes. Tests were conducted in an unmodified stationary diesel engine operating under idling conditions in attempt to simulate slow traffic in urban areas. Significant reductions in CO (up to 47% for B100; FW-2) and NOx (up to 20% for B5; FW-2 or B100; FW-1) were attained when using biodiesel fuels at the expense of 5% increase in fuel consumption. Principal component analysis (PCA) was performed to elucidate possible associations among gas (CO2, CO, and NOx) emissions, cetane number and iodine index with different sources of feedstock typically employed in the biodiesel industry. NOx, cetane number and iodine index were inversely proportional to CO2 and biodiesel concentration. High NOx emissions were reported from high iodine index biodiesel derived especially from forestry, fishery and some agriculture feedstocks, while the biodiesel derived from animal sources consistently presented lower iodine index mitigating NOx emissions. The obtained results point out the applicability of biodiesel fuels derived from fat-rich residues originated from animal production on mitigation of greenhouse gas emissions. The information may encourage practitioners from biodiesel industry whilst contributing towards development of sustainable animal production.

Implications: Emissions from motor vehicles can contribute considerably to the levels of greenhouse gases in the atmosphere. The use of biodiesel to replace or augment diesel can not only decrease our dependency on fossil fuels but also help decrease air pollution. Thus, different sources of feedstocks are constantly being explored for affordable biodiesel production. However, the amount of carbon monoxide (CO), carbon dioxide (CO2), and/or nitrogen oxide (NOx) emissions can vary largely depending on type of feedstock used to produce biodiesel. In this work, the authors demonstrated animal fat feasibility in replacing petrodiesel with less impact regarding greenhouse gas emissions than other sources.  相似文献   


18.
Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min−1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NOx and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.  相似文献   

19.
以公交车为例,利用OBS-2200和ELPI(electrical low pressure impactor)对深圳市重型柴油车(high-duty diesel vehicles,HDDVs)进行了3次在实际道路上的车载排放测试.根据测试数据计算了NOx和PM排放因子及百公里油耗,并分析了不同道路、不同工况对NOx...  相似文献   

20.
Nitrogen oxides are a potential atmospheric pollutant. Their formation and decomposition were studied in an experimental pulverized-coal-fired furnace. The concentration of nitrogen oxides (NOx) was a maximum in the combustion zone and decreased as the combustion gas cooled. At a coal burning rate of 2 Ib/hr and 22% excess air, reduction of nitrogen oxides was obtained by selective secondary-air distribution. With 105% cf the stoichiometric air fed to the coal-combustion zone and 17% additional air fed just beyond the flame front, 62% reduction of NOx occurred with good combustion efficiency. Lowering the quantity of excess air lowered the NOx concentration, but at the expense of combustion efficiency. When 22% excess air was fed to the primary combustion zone, NOx concentration in the effluent was 550 ppm and carbon in the fly ash 2.0%. With 5% excess air, the NOx concentration fell to 210 ppm and carbon in the fly ash rose to 13.8%. With stoichiometric combustion the NOx was 105 ppm a reduction of 81 %, and the carbon was 42.3%. Recirculation of combustion gas was not an effective means of lowering NOx formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号