首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
A sample of eight private gasoline and diesel conventional light-duty vehicles (LDVs) in use with various ages, carrying a load of 460 kg, were tested on a representative trip in the traffic flow of the city of Blida to obtain emission factors representing the actual use conditions of Algerian LDVs. The gas sampling system (mini-constant volume sampling) as well as the analyzers are carried on-board the vehicle. Around 55 tests were conducted during 3 months covering more than 480 km under various real driving conditions. The mean speed downtown is about 16.1 km/hr with a rather low acceleration, an average of 0.60 m/sec2. For each test, kinematics are recorded as well as the analysis of the four emitted pollutants carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbons. Emission factors were evaluated according to speed for each category of gasoline and diesel engines. The influence of some parameters such as cold/hot start, age of vehicle and its state of maintenance are discussed. Results are compared with the European database ARTEMIS for comparable vehicles. These measurements contribute to the development of unit emission of the vehicles used in Algeria, which are necessary for the calculation of emission inventory of pollutants and greenhouse gases from the road transportation sector. The unit emissions constitute a tool of decisionmaking aid regarding the conception of new regulations of vehicle control and inspection in Algeria and even in similar developing countries.  相似文献   

2.
介绍了一种用于柴油车排气后处理的PDPF的结构和工作原理。通过对比试验考察了PDPF的性能,包括ETC试验、全负荷烟度试验、自由加速烟度试验以及总功率检测。带PDPF与不带PDPF相比,PDPF对ETC排气中PM的降低效率达57.5%;对全负荷的滤纸式烟度和不透光烟度影响不大;使自由加速烟度有所下降;对发动机的动力性和经济性几乎没有影响。可靠性试验研究显示出PDPF的良好应用前景。  相似文献   

3.
The Coordinating Research Council (CRC) held its tenth workshop in March 2000, focusing on results from the most recent real-world vehicle emissions research. In this paper, we summarize the presentations from researchers who are engaged in improving our understanding of the contribution of mobile sources to emission inventories. Participants in the workshop discussed efforts to improve mobile source emission models and emission inventories, results from gas- and particle-phase emissions studies from spark-ignition and diesel-powered vehicles, new methods for measuring mobile source emissions, improvements in vehicle emission control systems (ECSs), and evaluation of motor vehicle inspection/maintenance (I/M) programs, as well as topics for future research.  相似文献   

4.
Modern diesel particulate filter (DPF) systems are very effective in reducing particle emissions from diesel vehicles. In this work low-level particulate matter (PM) emissions from a DPF equipped EURO-4 diesel vehicle were studied in the emission test laboratory as well as during real-world chasing on a high-speed test track. Size and time resolved data obtained from an engine exhaust particle sizer (EEPS) and a condensation particle counter (CPC) are presented for both loaded and unloaded DPF condition. The corresponding time and size resolved emission factors were calculated for acceleration, deceleration, steady state driving and during DPF regeneration, and are compared with each other. In addition, the DPF efficiency of the tested vehicle was evaluated during the New European Driving Cycle (NEDC) by real time pre-/post-DPF measurements and was found to be 99.5% with respect to PM number concentration and 99.3% for PM mass, respectively. PM concentrations, which were measured at a distance of about 10 m behind the test car, ranged from 1 to 1.5 times background level when the vehicle was driven on the test track under normal acceleration conditions or at constant speeds below 100 kmh?1. Only during higher speeds and full load accelerations concentrations above 3 times background level could be observed. The corresponding tests in the emission laboratory confirmed these results. During DPF regeneration the total PM number emission of nucleation mode particles was 3–4 orders of magnitude higher compared to those emitted at the same speed without regeneration, while the level of the accumulation mode particles remained about the same. The majority of the particles emitted during DPF regeneration was found to be volatile, and is suggested to originate from accumulated sulfur compounds.  相似文献   

5.
On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NOx for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km−1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.  相似文献   

6.
ABSTRACT

The Coordinating Research Council (CRC) held its tenth workshop in March 2000, focusing on results from the most recent real-world vehicle emissions research. In this paper, we summarize the presentations from researchers who are engaged in improving our understanding of the contribution of mobile sources to emission inventories. Participants in the workshop discussed efforts to improve mobile source emission models and emission inventories, results from gas- and particle-phase emissions studies from spark-ignition and diesel-powered vehicles, new methods for measuring mobile source emissions, improvements in vehicle emission control systems (ECSs), and evaluation of motor vehicle inspection/maintenance (I/M) programs, as well as topics for future research.  相似文献   

7.
Biodiesels are often marketed as being cleaner than regular diesel for emissions. Emission test results depend on the biodiesel blend, but laboratory tests suggest that biodiesels decrease particulate matter, carbon monoxide, hydrocarbons, and air toxins when compared to regular diesel. Results for the amount of oxides of nitrogen (NOx) have been less conclusive. Tests have also not evaluated the commonly available ranges of biodiesel blends in the laboratory. Additionally, little information is available from on-road studies, so the effectiveness of using biodiesels to reduce actual emissions is unknown. A more complex relationship exists between engine operation and the rate of emission production than is typically evaluated using engine or chassis dynamometer tests. On-road emissions can vary dramatically because emissions are correlated to engine mode. Additionally, activity such as idling, acceleration, deceleration, and operation against a grade can produce higher emissions than more stable engine operating modes. Because these modes are not well captured in a laboratory environment, understanding on-road relationships is critical in evaluating the emissions reductions that may be possible with biodiesels. More tests and quantifications of the effects of different blends on engine and vehicle performance are required to promote widespread use of biodiesel. The objective of this research was to conduct on-road tests to compare the emission impacts of different blends of biodiesel to regular diesel fuel under different operating conditions. The team conducted on-road tests that utilized a portable emissions monitoring system that was used to instrument transit buses. Regular diesel and different blends of biodiesel were evaluated during on-road engine operation by instrumenting three in-use transit buses, from the CyRide system of Ames, Iowa, along an existing transit route.  相似文献   

8.
Idle hydrocarbon and carbon monoxide measurements have been made on over 2500 cars at a New Jersey Inspection Station. These studies have shown that the idle test can be integrated into the present periodic motor vehicle inspection system with a minimum cost, testing time, and ease of operation.

Instrumentation at a low cost has recently become available, test procedures have been developed and potential emission reductions have been demonstrated for idle testing. High emissions indicate a car malfunction and the need for a tune-up. Effective low cost tune-ups can be made with exhaust instrumentation and garage training.

In the New Jersey REPAIR Project, preliminary idle cut-off levels were selected at 6% carbon monoxide and 1000 ppm hydrocarbon for pre-68 cars, 4% and 500 ppm for 1968–69 cars, and 3% and 300 ppm for later years. Volunteered vehicles which exceeded these levels were further tested at the New Jersey laboratory. Federal hot cycles, ACID mass cycles, Key Mode, and Idle tests were conducted before and after maintenance.

At idle, uncontrolled pre-1968 vehicles had an average reduction from 8.2 to 3.3% carbon monoxide and 2153 to 459 ppm hydrocarbons as hexane. Average mass reductions from the ACID-cycle were 45 g/mi CO and 6.3 g/mi hydrocarbons. Carbon monoxide idle reductions obtained for emission controlled 1968, 1969, and 1970 cars were about equal to those obtained for the pre-emission controlled vehicles, but hydrocarbon reductions were lower. Reductions obtained in federal hot cycles were from 4.1 to 2.1% CO and 1418 to 580 ppm hydrocarbons for pre-1968 cars, and 2.6 to 0.7% and 502 to 308 ppm for 1968–1969 cars.

Idle adjustments lower emissions in the idle, deceleration, and cruise modes up to 30 mph, thus urban driving areas should show the greatest reduction. Total motor vehicle emission reduction in New Jersey would be about 920,000 ton/yr of CO and 101,000 ton/yr of hydrocarbon; a 20 and 32% reduction.  相似文献   

9.
Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO2), oxides of nitrogen (NOX), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NOX/bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NOX/kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NOX threshold was derived from measurements where after-treatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger sample of in-use HD vehicles.

Implications: Regulatory agencies, civil society, and the public at large have a growing interest in vehicle emission compliance in the real world. Leveraging roadside plume measurements to identify vehicles with malfunctioning emission control systems is emerging as a viable new and useful method to assess in-use performance. This work proposes fuel-based emission factor thresholds for PM and NOx that signify exceedances of emission standards on a work-specific basis by analyzing real-time emissions in the laboratory. These thresholds could be used to prescreen vehicles before roadside enforcement inspection or other inquiry, enhance and further develop emission inventories, and potentially develop new requirements for heavy-duty inspection and maintenance (I/M) programs, including but not limited to identifying vehicles for further testing.  相似文献   


10.
Diesel engines: environmental impact and control.   总被引:10,自引:0,他引:10  
The diesel engine is the most efficient prime mover commonly available today. Diesel engines move a large portion of the world's goods, power much of the world's equipment, and generate electricity more economically than any other device in their size range. But the diesel is one of the largest contributors to environmental pollution problems worldwide, and will remain so, with large increases expected in vehicle population and vehicle miles traveled (VMT) causing ever-increasing global emissions. Diesel emissions contribute to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; soiling; reductions in visibility; and global climate change. Where instituted, control programs have been effective in reducing diesel fleet emissions. Fuel changes, such as reduced sulfur and aromatics content, have resulted in immediate improvements across the entire diesel on- and off-road fleet, and promise more improvements with future control. In the United States, for example, 49-state (non-California) off-road diesel fuel sulfur content is 10 times higher than that of national on-road diesel fuel. Significantly reducing this sulfur content would reduce secondary particulate matter (PM) formation and allow the use of control technologies that have proven effective in the on-road arena. The use of essentially zero-sulfur fuels, such as natural gas, in heavy-duty applications is also expected to continue. Technology changes, such as engine modifications, exhaust gas recirculation, and catalytic aftertreatment, take longer to fully implement, due to slow fleet turnover. However, they eventually result in significant emission reductions and will be continued on an ever-widening basis in the United States and worldwide. New technologies, such as hybrids and fuel cells, show significant promise in reducing emissions from sources currently dominated by diesel use. Lastly, the turnover of trucks and especially off-road equipment is slow; pollution control agencies need to address existing emissions with in-use programs, such as exhaust trap retrofits and smoke inspections. Such a program is underway in California. These and other steps that can be continued and improved will allow the use of the diesel engine, with its superior fuel consumption, to continue to benefit society while greatly reducing its negative environmental and health impacts. The next ten years can and must become the "Decade of Clean Diesel."  相似文献   

11.
In New York State, the calculation of air contaminant emissions from a variety of sources is an essential part of comprehensive air pollution studies. The tables used to calculate emissions were obtained from an extensive literature search and modified to apply to New York State conditions. For example, sulfur dioxide emission factors for coal were selected to reflect the average sulfur content of the coal sold in New York State. Since the literature contains a wide array of emission factors, it was necessary to evaluate the factors and select those which would be most appropriate for the techniques used in conducting the comprehensive studies in New York State. This paper does not present the emission tables themselves but does outline the development of such tables for use in nonprocess calculations, i.e., combustion for heat and power of bituminous and anthracite coal, distillate and residual oil, natural and bottled gas; combustion of gasoline and diesel in internal combustion engines; burning of refuse in dumps and incinerators; and evaporation of gasoline from marketing operations.  相似文献   

12.
ABSTRACT

A study of particulate matter (PM) emissions from in-use, light-duty vehicles was conducted during the summer of 1996 and the winter of 1997 in the Denver, CO, region. Vehicles were tested as received on chassis dynamometers on the Federal Test Procedure Urban Dynamometer Driving Schedule (UDDS) and the IM240 driving schedule. Both PM10 and regulated emissions were measured for each phase of the UDDS. For the summer portion of the study, 92 gasoline vehicles, 10 diesel vehicles, and 9 gasoline vehicles with visible smoke emissions were tested once. For the winter, 56 gasoline vehicles, 12 diesel vehicles, and 15 gasoline vehicles with visible smoke were tested twice, once indoors at 60 °F and once outdoors at the prevailing temperature. Vehicle model year ranged from 1966 to 1996. Impactor particle size distributions were obtained on a subset of vehicles. Continuous estimates of the particle number emissions were obtained with an electrical aerosol analyzer. This data set is being provided to the Northern Front Range Air Quality Study program and to the State of Colorado and the U.S. Environmental Protection Agency for use in updating emissions inventories.  相似文献   

13.
Using organic compounds as tracers, a chemical mass balance model was employed to investigate the relationship between the mutagenicity of the urban organic aerosol sources and the mutagenicity of the atmospheric samples. The fine particle organic mass concentration present in the 1993 annual average Los Angeles-area composite sample was apportioned among eight emission source types. The largest source contributions to fine particulate organic compound mass concentration were identified as smoke from meat cooking, diesel-powered vehicle exhaust, wood smoke, and paved road dust. However, the largest source contributions to the mutagenicity of the atmospheric sample were natural gas combustion and diesel-powered vehicles. In both the human cell and bacterial assay systems, the combined mutagenicity of the composite of primary source effluents predicted to be present in the atmosphere was statistically indistinguishable from the mutagenicity of the actual atmospheric sample composite. Known primary emissions sources appear to be capable of emitting mutagenic organic matter to the urban atmosphere in amounts sufficient to account for the observed mutagenicity of the ambient samples. The error bounds on this analysis, however, are wide enough to admit to the possible importance of additional mutagenic organics that are formed by atmospheric reaction (e.g., 2-nitrofluoranthene has been identified as an important human cell mutagen in the atmospheric composite studied here, accounting for approximately 1% of the total sample mutagenic potency).  相似文献   

14.
Different ways for modeling the impact of vehicle emission inspection and maintenance programs on fleet hydrocarbon emissions are examined. A dynamic model is developed for forecasting fleet emissions in which individual vehicle performance is modeled as a stochastic process and vehicle emissions are tracked over time. Emissions inspection and repair are incorporated into the model, allowing for the stochastic aspects of both testing and repair. This model is compared to EPA’s model for evaluating the impact of vehicle emissions inspection and maintenance. We find that the way vehicle emission equipment deterioration overtime is modeled is important for forecasting emissions from the fleet and for assessing the success of inspection and maintenance programs. For inspection programs, we find that factors such as the proportion of vehicles tested, and repair effectiveness and duration have the greatest impact on emission reductions. The ability of different emission testing regimes to identify polluting vehicles has less impact on a program’s overall potential for emissions reduction. Policy recommendations for I&M testing and predictions of emission reduction credits from these tests will depend in important ways on the methods used in the underlying emissions models.  相似文献   

15.
The aerosol in a non-industrial town normally is dominated by emissions from vehicles. Whereas gasoline-powered cars normally only emit a small amount of particulates, the emission by diesel-powered cars is considerable. The aerosol particles produced by diesel engines consist of graphitic carbon (GC) with attached hydrocarbons (HCs) including also polyaromatic HCs. Therefore the diesel particles can be carcinogenic. Besides diesel vehicles, all other combustion processes are also a source for GC; thus source apportionment of diesel emissions to the GC in the town is difficult.A direct apportionment of diesel emissions has been made possible by marking all the diesel fuel used by the vehicles in Vienna by a normally not occurring and easily detectable substance. All emitted diesel particles thus were marked with the tracer and by analyzing the atmospheric samples for the marking substance we found that the mass concentrations of diesel particles in the atmosphere varied between 5 and 23 μg m−3. Busy streets and calm residential areas show less difference in mass concentration than expected. The deposition of diesel particles on the ground has been determined by collecting samples from the road surface. The concentration of the marking substance was below the detection limit before the marking period and a year after the period. During the period when marked diesel fuel was used, the concentrations of the diesel particles settling to the ground was 0.012–0.07 g g−1 of collected dust.A positive correlation between the diesel vehicle density and the sampled mass of diesel vehicles exists. In Vienna we have a background diesel particle concentration of 11 μg m−3. This value increases by 5.5 μg m−3 per 500 diesel vehicles h−1 passing near the sampling location.The mass fraction of diesel particles of the total aerosol mass varied between 12.2 and 33%; the higher values were found in more remote areas, since diesel particles apparently diffuse easily.Estimates of diesel particle concentration by emission inventory or by using lead concentrations as an indicator for vehicle emissions gave similar values to those obtained in this study.Using available cancer risk data and diesel particle concentration found in this study, 1–2.6 additional lung cancers per 100,000 persons yr−1 breathing diesel emissions in the measured concentration the whole lifetime can be expected.  相似文献   

16.
ABSTRACT

The expense and inconvenience of enhanced-vehicle-emissions testing using the full 240-second dynamometer test has led states to search for ways to shorten the test process. In fact, all states that currently use the IM240 allow some type of fast-pass, usually as early in the test as second 31, and Arizona has allowed vehicles to fast-fail after second 93. While these shorter tests save states millions of dollars in inspection lanes and driver costs, there is a loss of information since test results are no longer comparable across vehicles. This paper presents a methodology for estimating full 240-second results from partial-test results for three pollutants: HC, CO, and NOx. If states can convert all tests to consistent IM240 readings, they will be able to better characterize fleet emissions and to evaluate the impact of inspection and maintenance and other programs on emissions over time. Using a random sample of vehicles in Arizona which received full 240-second tests, we use regression analysis to estimate the relationship between emissions at second 240 and emissions at earlier seconds in the test. We examine the influence of other variables such as age, model-year group, and the pollution level itself on this relationship. We also use the estimated coefficients in several applications. First, we try to shed light on the frequent assertion that the results of the dynamometer test provide guidance for vehicle repair of failing vehicles. Using a probit analysis, we find that the probability that a failing vehicle will pass the test on the first retest is greater the longer the test has progressed. Second, we test the accuracy of our estimates for forecasting fleet emissions from partial-test emissions results in Arizona. We find forecasted fleet average emissions to be very close to the actual fleet averages for light-duty vehicles, but not quite as good for trucks, particularly when NOx emissions are forecast.  相似文献   

17.
This paper examines the history of air pollution control in the State of New Jersey, particularly, how it relates to the development of the state-local governmental relationship, and to the coordination of their respective control efforts. It also describes the methodology for developing local control programs. The information presented in the paper is directed to those individuals who may be able to analogize the experience in New Jersey to situations developing in their own jurisdictions.  相似文献   

18.
Emissions from diesel vehicles and gas-powered heavy-duty vehicles are becoming a new focus of many inspection and maintenance (I/M) programs. Diesel particulate matter (PM) is increasingly becoming more recognized as an important health concern, while at the same time, the public awareness of diesel PM emissions because of their visibility have combined to increase the focus on diesel emissions in the United States. This has resulted in an increased interest by some states in including heavy-duty vehicle testing in their I/M program. This paper provides an overview of existing I/M programs focused on testing light-duty diesel vehicles, heavy-duty diesel vehicles, and heavy-duty gasoline vehicles (HDGVs). Information on 39 I/M programs in 27 different states in the United States plus 9 international inspection programs is included. Information on the status of diesel emissions technology and current test procedures is also presented. The goal is to provide useful information for air quality managers as they work to decide whether such I/M programs would be worth pursuing in their respective areas and in evaluating the emissions measurement technology to be used in the program. Testing of HDGVs is generally limited to idle testing, because dynamometer testing of these vehicles is not practical, and most were not certified on a chassis basis. Testing of diesel vehicles has mostly been limited to SAE J1667 "snap-idle" opacity testing. Cost-effective technology for measuring diesel emissions currently does not exist, and, therefore, opacity-type measurements, although not effective at reducing the pollutants of most significant health concern, will continue to be used.  相似文献   

19.
柴油机机外净化技术发展现状及展望   总被引:3,自引:2,他引:1  
汽车柴油化已成为一个国际趋势,柴油机的气体净化得到越来越多的关注,面对欧洲Ⅳ/Ⅴ排放标准,开发适用于高标准的排放控制技术成为迫切需要解决的问题,而机外净化是这一技术的关键。对当前国内外研究和应用较多的柴油机机外净化技术进行了综述,分析了各种方法的原理、特点、处理效果及应用前景,并对其发展的趋势进行了展望。  相似文献   

20.
The Coordinating Research Council (CRC) held its 12th workshop in April 2002, with nearly 90 presentations on the most recent on-road vehicle emissions research. This paper summarizes the presentations from researchers who are engaged in improving understanding of the contribution of mobile sources to air quality. Participants in the workshop discussed mobile source emission models and emission inventories, results from gas- and particle-phase emissions studies from spark-ignition and diesel-powered vehicles (with an emphasis in this workshop on particle emissions), effects of fuels on emissions, evaluation of in-use emissions control programs, and efforts to improve our capabilities in performing on-board emissions measurements, as well as topics for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号