首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A technique of detecting gaseous air pollutants by means of absorption of laser radiation is under development at the NASA Electronics Research Center. The iodine infrared laser and the carbon dioxide infrared laser are forced to emit spectral lines which fall on the infrared absorption bands of atmospheric pollutants. The attenuation of a laser line when passed through an air sample is the measure of the pollutant concentration. The narrow spectral width of the laser emission permits sensitive detection, minimizes interference between pollutants, and allows penetration of atmospheric water bands. The collimation and high power outputs available from lasers permit transmission of the radiation over long straight paths through the atmosphere and over long folded paths in multiple-pass absorption cells. A sample of absorbing gas placed within the laser cavity forces the emission of the selected wavelengths. With a one-half kilometer path to a retro-reflector and back, it is predicted that the following concentrations of air pollutants will be detected by means of the indicated laser lines: carbon monoxide at 2 parts per million in air (ppm), using the 4.86 micron iodine line; nitric oxide at 1 ppm, using the 5.5 micron iodine line; ethylene at 0.1 ppm, using the 10.53 micron carbon dioxide line; sulfur dioxide at 1.5 ppm, using the 9.08 micron carbon dioxide line; and ozone at 0.15 ppm, using the 9.52 micron carbon dioxide line. It seems feasible to extend the technique to other gaseous pollutants such as nitrogen dioxide, methane, butane, and peroxy acetyl nitrate. Continuing effort is being devoted to development and construction of the laser transmitting and receiving equipment. Field testing is planned for the near future.  相似文献   

2.
A carbon monoxide analyzer has been developed which is capable of continuous measurement of the carbon monoxide concentration in the atmosphere. The operating principle of the instrument is the reaction of carbon monoxide with hot mercuric oxide followed by the photometric determination of the mercury vapor produced. Oxygenated hydrocarbons and olefins are quantitatively detected. Those normally present are in the ambient atmosphere in low concentrations relative to CO. Hydrogen and methane in the atmosphere do not interfere with the CO analysis. Measurements of atmospheric CO concentrations in California, Greenland, and Oregon seem to indicate that CO content is an air mass characteristic. North Pacific marine air mass concentrations may be as low as about 0.040 parts per million (ppm) CO, while the air mass over continental California seems to be characterized by CO levels of 0.5-1.0 ppm or greater.  相似文献   

3.
Abstract

The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments. There is a positive correlation between the CO and hydrogen sulfide concentrations measured during the anaerobic degradation experiments.  相似文献   

4.
The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments.  相似文献   

5.
Dissolved methane was monitored by means of a diffusion probe in combination with a photoacoustic (PA) detector cell placed in the cavity of a liquid nitrogen-cooled CO laser. The detection limit of the photoacoustic detector was 1 ppbv methane (≈ 2 μM in aqueous solution), the time response was 60 s, the spatial resolution was 1.36 mm. These limits were determined by the acoustic noise and the configuration of the diffusion probe. The combination of PA detector with gas diffusion probes was found to be useful for monitoring gaseous compounds. However, the membrane material of the diffusion probe was critical. Silicone as membrane material was useful only for measurement of CH4. Goretex as membrane material was applicable to measurement of dimethylsulfide (DMS), but did not give a stable signal for trimethylamine (TMA).

Vertical concentration profiles of CH4 in anoxic paddy soil agreed well with earlier results obtained with a gas chromatograph as detector. Methane was produced in anoxic soil layers below 8–10 mm depth and diffused upwards to the surface through a layer of CH4-consuming bacteria situated at about 2 mm depth. In the oxic upper 2 mm soil layer the concentration of CH4 decreased below the detection limit of our system. Methane-containing gas bubbles that were embedded in the soil were detected by a steep increase of the CH4 signal. The combination of PA detector and gas diffusion probe was found to be a useful tool to measure CH4 gradients in submerged soil or sediment with high temporal and spatial resolution, thus allowing the localization and quantification of CH4 production and CH4 oxidation rates within the soil profile.  相似文献   


6.
改进GC/FID法连续观测大气中CO浓度   总被引:1,自引:0,他引:1  
改进装配有氢火焰离子化检测器(即FID)的气相色谱仪(GC),可连续监测大气中痕量气体CO浓度.本系统采用单阀双柱反吹进样技术,优选前置柱能更有效地剔除杂质,提高了分析柱效率,保持色谱基线平稳,提高分辨率和定量分析的准确率.优化后的气路设计与色谱柱的改进,使GC/FID对CO的最低检出限达到10×10-9、精密度误差小于2%,准确度在±2%之内.将气相色谱与动态气体稀释仪耦合使系统能够自动进行工作曲线校准,系统自动采样、分析和标定,无需人员职守.对北京大气CO连续观测结果表明,北京大气CO浓度变化受气象要素与排放源双重控制.  相似文献   

7.
A bench-scale biofilter was evaluated for removing ammonia (NH3) from poultry house exhaust. The biofilter system was equipped with a compost filter to remove NH3 and calcium oxide (CaO) filter to remove carbon dioxide (CO2). Removal of NH3 and CO2 from poultry house exhaust could allow treated air with residual heat to be recirculated back into the poultry house to conserve energy during winter months. Apart from its use as a plant nutrient, NH3 removal from poultry house exhaust could lessen the adverse environmental impacts of NH3 emissions. Ammonia and CO2 were measured daily with gas detector tubes while temperatures in the poultry pen and compost filter were monitored to evaluate the thermal impact of the biofilter on treated air. During the first 37 days of the 54-day study, exhaust air from 33 birds housed in a pen was treated in the biofilter; for the final 17 days, NH3-laden exhaust, obtained by applying urea to the empty pen was treated in the biofilter. The biofilter system provided near-complete attenuation of a maximum short-term NH3 concentration of 73 ppm. During the last 17 days, with a mean influent NH3 concentration of 26 ppm, the biofilter provided 97% attenuation. The CaO filter was effective in attenuating CO2. Compared with a biofilter sized only for NH3 removal, an oversized biofilter would be required to provide supplemental heat to the treated air through exothermic biochemical reactions in the compost. The biofilter could conserve energy in poultry production and capture NH3 for use as plant nutrient. Based on this study, a house for 27,000 broilers would require a compost filter with a volume of approximately 34 m3.  相似文献   

8.
It always has been assumed that only a small amount of CO will be produced by a gas stove when mixture of air and gas are well adjusted and that that small amount will be dissipated by the home’s ventilation and by a combination of a fan and hood over the stove. However, preparation of meals may substantially increase CO. The immediate air supply may be progressively diminished when more than one burner is used and air supply may be partially cut off by vessels placed over the gas flame. The purpose of this investigation was to determine the amount of CO that may be expected to be produced during normal cooking. The experiment measured CO levels, using multiple burners with and without cooking vessels, and the rate of dissipation of the accumulated gas under various conditions of ventilation.  相似文献   

9.
The thermal destruction of benzene in methane/air flue gas is studied experimentally using an atmospheric laminar flow reactor in laboratory scale. The reactor is operated at four different fuel equivalent ratios (phi = 0.06, 0.1,0.5, 3.7), and temperatures in the range from 850 to 973 K and realises a residence time of 5 s. Stable-species concentrations are measured by gas chromatography (GC) and high-pressure liquid chromatography (HPLC), where phenol, acetylene, formaldehyde, acrolein, methane and acetaldehyde are the major hydrocarbon products besides CO and CO2. The augmentation of the temperature from 850 to 973 K increases the benzene conversion rate from 55% to 99%. The experimental results for one fuel equivalent ratio (phi = 0.5) are compared to the benzene model proposed by Emdee et al. (J. Phys. Chem. 92 (1992) 2151-2161). A fair agreement is observed for the benzene consumption and the CO production throughout the temperature range considered here. The small hydrocarbons are not very well matched, which requires further research on the sub-models. Our experimental results on laboratory scale provide a database for the modelling of benzene oxidation in waste incinerators.  相似文献   

10.
Few techniques exist to measure the biodegradation of recalcitrant organic compounds such as chlorinated hydrocarbons (CHC) in situ, yet predictions of biodegradation rates are needed for assessing monitored natural attenuation. Traditional techniques measuring O2, CO2, or chemical concentrations (in situ respiration, metabolite and soil air monitoring) may not be sufficiently sensitive to estimate biodegradation rates for these compounds. This study combined isotopic measurements (14C and delta13C of CO2 and delta13C of CHCs) in conjunction with traditional methods to assess in situ biodegradation of perchloroethylene (PCE) and its metabolites in PCE-contaminated vadose zone sediments. CHC, ethene, ethane, methane, O2, and CO2 concentrations were measured over 56 days using gas chromatography (GC). delta13C of PCE, trichloroethylene (TCE) and cis-1,2-dichloroethylene (DCE), delta13C and 14C of vadose zone CO2 and sediment organic matter, and delta13C, 14C, and deltaD of methane were measured using a GC-isotope ratio mass spectrometer or accelerator mass spectrometer. PCE metabolites accounted for 0.2% to 18% of CHC concentration suggesting limited reductive dechlorination. Metabolites TCE and DCE were significantly enriched in (13)C with respect to PCE indicating metabolite biodegradation. Average delta13C-CO2 in source area wells (-23.5 per thousand) was significantly lower compared to background wells (-18.4 per thousand) indicating CHC mineralization. Calculated CHC mineralization rates were 0.003 to 0.01 mg DCE/kg soil/day based on lower 14C values of CO2 in the contaminated wells (63% to 107% modern carbon (pMC)) relative to the control well (117 pMC). Approximately 74% of the methane was calculated to be derived from in situ CHC biodegradation based on the 14C measurement of methane (29 pMC). 14C-CO2 analyses was a sensitive measurement for quantifying in situ recalcitrant organic compound mineralization in vadose zone sediments for which limited methodological tools exist.  相似文献   

11.
Zhang Y  Cai N  Yang J  Xu B 《Chemosphere》2008,73(5):650-656
The reduction of nitric oxide using ammonia combined with methane and pulverized coal additives has been studied in a drop tube furnace reactor. Simulated flue gas with 1000ppm NO(x) and 3.4% excess oxygen was generated by cylinder gas. Experiments were performed in the temperature range of 700-1200 degrees C to investigate the effects of additives on the DeNO(x) performance. Subsequently, a kinetic mechanism was modified and validated based on experimental results, and a computational kinetic modeling with CHEMKIN was conducted to analyze the secondary pollutants. For both methane and pulverized coal additives, the temperature window is shifted towards lower temperatures. The appropriate reaction temperature is shifted to about 900 and 800 degrees C, respectively with 1000ppm methane and 0.051gmin(-1) pulverized lignite coal. The addition of methane and pulverized coal widens the temperature window towards lower temperature suggesting a low temperature application of the process. Furthermore, selective non-catalytic reduction (SNCR) reaction rate is accelerated evidently with additives and the residence time to complete the reaction is shortened distinctly. NO(x) reduction efficiency with 80% is achieved in about 0.3s without additive at 1000 degrees C. However, it is achieved in only about 0.2s with 100ppm methane as additive, and only 0.07 and 0.05s are needed respectively for the cases of 500 and 1000ppm methane. The modified kinetic modeling agrees well with the experimental results and reveals additional information about the process. Investigation on the byproducts where NO(2) and N(2)O were analyzed by modeling and the others were investigated by experimental means indicates that emissions would not increase with methane and pulverized coal additions in SNCR process and the efficacious temperature range of SNCR reaction is widened approximately with 100 degrees C.  相似文献   

12.
Continuous measurements of total hydrocarbons (and other organic substances) and of methane were made in Cincinnati and Los Angeles for three-month periods. Some of the measurements were made during episodes of photochemical air pollution. Two instruments, one for measurement of total hydrocarbons and the other for methane, were operated in parallel. Both incorporated flame ionization detectors having greater sensitivity than commercial flame ionization instruments. The flame ionization analysis for methane was made specific by use of an adsorbent carbon column preceding the analyzer to retain all organic substances except methane. Subtracting the methane concentration values from those for total hydrocarbons gave nonmethane hydrocarbon concentrations. The data showed diurnal patterns of concentrations of methane and nonmethane hydrocarbons in the atmosphere. Average hourly values for methane were strikingly similar in Los Angeles and in Cincinnati (2.6 and 2.4 ppm, respectively); those for nonmethane hydrocarbons were four times as high in Los Angeles (3.0 and 0.8 ppm, respectively). A bimodal frequency distribution pattern of the concentrations suggested that atmospheric ventilation was either good or poor, with less than a random amount of time in intermediate stages. The width of the methane frequency distribution peak was about half the width of that for nonmethane hydrocarbons, indicating a different and more constant source for the former.  相似文献   

13.
High CO and NO2 concentrations have been documented in homes with unvented combustion appliances, such as natural gas fireplaces. In addition, polycyclic aromatic hydrocarbons (PAH) are emitted from incomplete natural gas combustion. The acute health risks of CO and NO2 exposure have been well established for the general population and for certain high-risk groups, including infants, the elderly, and people with heart disease or asthma. Health effects from PAH exposure are less well known, but may include increased risk of cancer. We monitored CO emissions during the operation of unvented natural gas fireplaces in two residences in Boulder, CO, at various times between 1997 and 2000. During 1999, we expanded our tests to include measurements of NO2 and PAH. Results show significant pollutant accumulation indoors when the fireplaces were used for extended periods of time. In one case, CO concentrations greater than 100 ppm accumulated in under 2 hr of operation; a person at rest exposed for 10 hr to this environment would get a mild case of CO poisoning with an estimated 10% carboxyhemoglobin level. Appreciable NO2 concentrations were also detected, with a 4-hr time average reaching 0.36 ppm. Similar time-average total PAH concentrations reached 35 ng/m3. The results of this study provide preliminary insights to potential indoor air quality problems in homes operating unvented natural gas fireplaces in Boulder.  相似文献   

14.
An office containing about 65 employees was found to have 8-h average CO concentrations of 18-26 ppm during a week in winter. On one Friday afternoon, 20 nonsmoking office workers had alveolar CO levels of 23 ± 3 ppm compared to levels of 8 ± 2 ppm in six nonsmoking workers in other offices in the same building. After a weekend at home, the affected office workers displayed reduced alveolar CO levels of 7 ± 2 ppm. The source of the high CO levels was attributed to a parking garage on the same level as the office. Closing fire doors and activating garage fans rectified the situation. The breath sampling method is found to require a correction factor based on the difference between the true alveolar CO and the CO level in the surrounding air. The methods and equipment employed in this study (personal air monitors, electronic data loggers, breath sampling) are recommended for screening and identifying potential CO problems in buildings with similar conditions.  相似文献   

15.
The principle of this detector is based on the measurement of the intensity of the ultraviolet fluorescence of SO2 produced by absorption of the Zn 2138 Å or Cd 2288 Å line. The fluorescence intensity was found to be linear from 0.1 to 500 ppm of SO2 in air with the Zn lamp and from 0.1 to 1600 ppm with the Cd lamp. The detection limit at present is about 20 ppb. There is no detectable interference from O3, H2S, NO2, CO2, CO, or H2, although the presence of a large concentration of CS2 (500 times as much as SO2) NO (500 times) or C2H4 (4000 times) interferes with the measurement. The presence of 2% H20 reduces the signal by 25%, while up to 1 % CH4 has almost no effect.  相似文献   

16.
二维气相色谱法测定空气中的总烃及非甲烷总烃   总被引:3,自引:0,他引:3  
采用单一进样口六通阀进样、毛细管柱二维气相色谱仪三通路分离塔柱分离系统、采用氢离子化检测器分别产生信号,测定环境空气中的非甲烷总烃。通过柱分离系统将样品平均分配到不同类型的两个毛细管色谱柱,分别测定总烃及甲烷。方法简单、快速,最大程度地保证了进样的一致性,从而保证了分析结果的准确性。  相似文献   

17.
Photolysis of oxyfluorfen, an herbicide of the nitrodiphenyl ether class, was studied in aqueous methanol under UV and sunlight. UV irradiation was carried out in a borosilicate glass photoreactor (containing 250 ppm oxyfluorfen in 50% aqueous methanol) equipped with a quartz filter and 125 watt mercury lamp (maximum output 254 nm) at 25 ± 1°C. Sunlight irradiation was conducted at 28 ± 1°C in borosilicate Erlenmeyer flasks containing 250 ppm oxyfluorfen in 50% aqueous methanol. The samples from both the irradiated conditions were withdrawn at a definite time interval and extracted to measure oxyfluorfen content by gas chromatography-flame ionization detector for rate study. The half-life values were 20 hours and 2.7 days under UV and sunlight exposure, respectively. Photolysis of oxyfluorfen yielded 13 photoproducts of which three were characterized by infrared spectrophotometer and 1H NMR and 13C NMR spectroscopy. The rest of the photoproducts were identified by gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC). An ionization potential 70 eV was used for electron impact-mass spectrometry (EI-MS) and methane was used as reagent gas for chemical ionization-mass spectrometry (CI-MS). Two of the photoproducts were also synthesized for comparison. The main phototransformation pathways of oxyfluorfen involved nitro reduction, dechlorination, and hydrolysis as well as nucleophiles displacement reaction.  相似文献   

18.
Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations >3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations >4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide.
Implications:Information regarding air emissions from shale gas production is important given the recent increase in number of wells in various regions in the United States. Methane, the primary natural gas constituent, is a greenhouse gas; hydrogen sulfide, which can be present in gas condensate, is an odor-causing compound. This study surveyed wells representing one-third of the natural gas production volume in the Texas Barnett Shale and identified the percent of sites that warrant further study due to their fence line methane and hydrogen sulfide concentrations.  相似文献   

19.
The mediated electrochemical oxidation (MEO) process using cerium(IV) in methanesulphonic acid (MSA) as the oxidizing medium was employed for the mineralization of phenol in batch and continuous feeding modes. Although nitric acid was an extensively studied electrolyte for organic mineralization reactions in MEO processes it does possess the problem of NO(x) gas production during the reduction of nitric acid in the cathode compartment of the electrochemical cell. This problem could be circumvented by proper choice of the electrolyte medium such as MSA. The mediator cerium in MSA solution was first oxidized to higher oxidation state using an electrochemical cell. The produced Ce(IV) oxidant was then used for the destruction of phenol. It was found that phenol could be mineralized to CO2 by Ce(IV) in MSA. The evolved CO2 was continuously measured and used for the calculation of destruction efficiency. The destruction efficiency was observed to be 85% based on CO2 evolution for 1000 ppm phenol solution at 80 degrees C in continuous feed mode.  相似文献   

20.
In air quality monitoring studies, continuous sampling is capable of reflecting real time variation of gas levels, however, with a margin of uncertainty related to the response time of the sensor and to the speed of concentration fluctuation. In contrast, grab sampling allows the determination of average gas concentration over the whole sampling period eliminating thus the uncertainties associated with the continuous method. As studies of in-vehicle carbon monoxide (CO) exposure often show rapidly fluctuating CO levels and are increasingly using the continuous electrochemical sensing method, the present activity aims at validating the suitability of the latter method for this monitoring task. For this purpose, an electrochemical CO sensing monitor was used to continuously monitor CO level inside and outside of a vehicle moving in an urban area, and to analyze the content of concomitantly taken grab samples. Trip-average CO levels measured using the two testing methods were compared. For CO levels higher than the instrument detection limit (1 ppm), the observed percent difference between continuous and grab sampling results varied within a fairly acceptable range (0.6–15.4%). The regression of continuous sampling data against grab sampling data revealed an average error of 6.9%, indicating the suitability of the continuous electrochemical method for monitoring in-vehicle and exterior average CO concentration under typical urban traffic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号