首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
On June 5 and 6 of 1980, two parallel plume oxidation studies were carried out in the vicinity of the Tennessee Valley Authority's Colbert Steam Plant. One study was performed in a smog chamber into which stack gases were injected and mixed with ambient air. The other study included direct airborne sampling of the power plant plume. Atmospheric oxidation rates for the conversion of SO2 to SO4 2- and the removal rates of NO x (which is presumably the rate of NO3 - formation) were estimated for both studies. The SO2 to SO4 2- rate coefficients were found to be 0.022 ± 0.009 h-1 for both chamber experiments and the first airborne sampling day. For the second day, a rate constant of 0.041 ± 0.052 h-1 was estimated from the aircraft data. The large deviation in this value is explained by the fact that the plume from the power plant combined and reacted with the urban plume from the city of Florence, AL. The formation of a very large "O3 bulge" on this day is also attributed to the mixed plumes. The first order rate coefficients for NO x removal were estimated to be 0.27 ± 0.14 h-1 for both chamber experiments and the first airborne sampling day. A NO x removal rate could not be determined for the second airborne sampling day.  相似文献   

3.
4.
5.
Carbonaceous species (organic carbon [OC] and elemental carbon [EC]) and inorganic ions of particulate matter less than 2.5 μm (PM2.5) were measured to investigate the chemical characteristics of long-range-transported (LTP) PM2.5 at Gosan, Jeju Island, in Korea in the spring and fall of 2008–2012 (excluding 2010). On average, the non-sea-salt (nss) sulfate (4.2 µg/m3) was the most dominant species in the spring, followed by OC (2.6 µg/m3), nitrate (2.1 µg/m3), ammonium (1.7 µg/m3), and EC (0.6 µg/m3). In the fall, the nss-sulfate (4.7 µg/m3) was also the most dominant species, followed by OC (4.0 µg/m3), ammonium (1.7 µg/m3), nitrate (1.1 µg/m3), and EC (0.7 µg/m3). Both sulfate and OC were higher in the fall than in the spring, possibly due to more common northwest air masses (i.e., coming from China and Korea polluted areas) and more frequent biomass burnings in the fall. There was no clear difference in the EC between the spring and fall. The correlation between OC and EC was not strong; thus, the OC measured at Gosan was likely transported across a long distance and was not necessarily produced in a manner similar to the EC. Distinct types of LTP events (i.e., sulfate-dominant LTP versus OC-dominant LTP) were observed. In the sulfate-dominant LTP events, air masses directly arrived at Gosan without passing over the Korean Peninsula from the industrial area of China within 48 hr. During these events, the aerosol optical depth (AOD) increased to 1.63. Ionic balance data suggest that the long-range transported aerosols are acidic. In the OC-dominant LTP event, a higher residence time of air masses in Korea was observed (the air masses departing from the mainland of China arrived at the sampling site after passing Korea within 60–80 hr).

Implications:?In Northeast Asia, various natural and anthropogenic sources contribute to the complex chemical components and affect local/regional air quality and climate change. Chemical characteristics of long-range-transported (LTP) PM2.5 were investigated during spring and fall of 2008, 2009, 2011, and 2012. Based on air mass types, sulfate-dominant LTP and OC-dominant LTP were observed. A long-term variation and chemical characteristics of PM2.5 along with air mass and satellite data are required to better understand long-range-transported aerosols.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Abstract

A wind tunnel study was completed to determine the effects the presence of a parapet and raised intake configurations have on the dilution of a pollutant between a rooftop stack and building intake. This study was the first to address the effects of building parapets and varying intake configurations. A study of this kind is desirable because it is common practice for architects to attempt to hide stacks with the use of a parapet in order to make industrial buildings more aesthetically pleasing. This is done with no thought to the effect it may have on the intended function of the stacks, which is dispersing gases away from the building to avoid contamination of ventilation air.

Three parapet configurations (no parapet and two different parapet heights) and two intake configurations (flush and raised) were investigated. The relative effects of the parapets and the raised intake configurations were also compared and contrasted for five stack heights, two stack locations, and four intake locations.

The parapets were found to produce a cavity zone that extends above the building's roof by as much as two times the physical height of the parapet; increasing stack height had little effect on dispersion until the stack extended beyond this cavity region. The independent use of the parapets and raised intake configuration decreased the number of dilutions occurring between stack and intake when compared to the no parapet and flush intake configurations in all cases. Also substantiated in this study is the widely accepted view that the effect of the parapet addition is to decrease the effective stack height by the parapet height itself.

The results of this investigation were then compared to existing wind tunnel-derived empirical models. The models tested were not able to predict the effects of varying stack height and of varying the relative distance between stack and intake on the dilution of a pollutant between stack and intake under the tested configurations.  相似文献   

17.
18.
19.
Ozone continues to be one of the most important air pollution problems in the United States. While significant progress has been made, certain areas of the country still experience unhealthy levels of ozone and are unlikely to achieve current primary standards by 1988. With the prospect of an influx of millions of additional people, and their cars, into these areas by the year 2000, the problem of oxidant regulation and control becomes even greater. From this realization, the Effects Division of the Air Pollution Control Association conceived this conference topic. The summary that follows highlights key issues and findings from the conference held in November 1984 in Houston, Texas. The transactions of the conference will be available from APCA headquarters in the near future.  相似文献   

20.
The atmospheric, edaphic, and vegetative components of the roadside ecosystem contain elevated levels of lead originating from the combustion of lead containing gasolines by motor vehicles. The size of this ecosystem approximates 3.04 X 107 hectares (118,000 square miles) in the United States. Recent evidence has greatly refined our understanding of the distribution and localization of lead in the roadside environment. This paper is a representative review of some of this recent evidence. Vehicles release approximately 80 mg of lead/km to the atmospheric compartment in the form of inorganic lead salts ranging in size from 1 to 5 µ. Lead content of roadside atmospheres may be elevated 2-20 times non-roadside atmospheres. Sedimentation from the atmospheric compartment results in lead contamination of the soil and vegetative compartments. Lead in the upper 5 cm of the soil profile may be elevated 30 times non-roadside soil within a few m of a street or highway. The soil lead is largely bound by organic matter exchange sites or present as the relatively insoluble lead sulfate. The increased lead burden of plants, largely due to surface deposition, may be 5-20,50-200, and 100-200 times baseline lead levels for unwashed agricultural crops, grass, and trees respectively. Invariably most plant studies demonstrate a strong inverse correlation between plant lead level and sampling distance normal to the highway and a less strong, but direct, correlation between lead burden and traffic volume. While our appreciation of the distribution of lead in the roadside ecosystem is good, our understanding of its chemistry and the effects on the biota are deficient. Acute and direct impacts of lead on components of the roadside biota are not apparent. The potential for interactive effects with other stress factors and for subtle impact is considerable, however, especially in regard to plant surface and soil microbiota, foraging insects and animals, and plant leaf and root metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号