首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of nitrogen dioxide, ozone and, for the first time, on-line, nonmethane hydrocarbons with a quasicontinuous gaschromatographic/flame ionization technique were performed on a manned hydrogen-gas balloon platform. A cycle time of 10 min allowed the determination of nonmethane hydrocarbons in the carbon number range of C4-C10 with a detection limit of 10 pptv. In addition, meteorological parameters (atmospheric pressure, temperature, humidity) along with GPS-data (global positioning system) was accomplished during the balloon flights. Balloon measurements of trace compounds provide valuable information about photochemical processes in the boundary layer since gas ballooning offers the only technique that stays in the same air parcel along Langrangian trajectories. In addition, gas ballooning represents a unique tool to elucidate micrometeorological observations such as atmospheric stability oscillations and local wind fields.  相似文献   

2.
Carbon monoxide and hydrocarbons were sampled at operator’s nose height inside vehicles moving in moderate to heavy traffic in six cities. The samples were integrated over 20-30 minutes by collection in Mylar bags. Carbon monoxide and hydrocarbons were analyzed by infrared and flame ionization, respectively, with instruments at the Continuous Air Monitoring Program (CAMP) station in each city. Detector tubes for carbon monoxide were also used to determine 5-min concentrations at suspected high points in the field. Estimates of traffic density were made. Three types of traffic arteries were considered: (7) heavily traveled, wide expressways, (2) main city streets with moderately rapid vehicular traffic, and (3) center city streets with slow-moving traffic. Integrated half-hour CO concentrations obtained within the vehicles while in traffic were generally considerably higher than the concurrent concentrations measured at the CAMP sites. In-traffic CO values in all cities sampled exceeded 30 ppm in at least 10% of the integrated samples. The range of city averages was 21–39 ppm carbon monoxide and the range of individual integrated samples was 7–77 ppm of carbon monoxide.  相似文献   

3.
The infiltration of vehicle emissions into a house from the attached garage was studied for 16 homes of differing designs using the same extensively characterized vehicle at each home. Before the in-home measurement program, the cold-start and hot-start tailpipe emissions and hot-soak evaporative emissions from a 1993 Buick Regal were measured using standard vehicle emissions measurement methods. The emissions were chemically characterized for methane, nonmethane hydrocarbons (NMHC), and carbonyl compounds. The in-home measurements occurred over two winter seasons (1997-1998 and 1998-1999) in Ottawa, Ontario, Canada. Samples of indoor air and garage atmosphere were characterized for carbon monoxide, carbon dioxide, methane, NMHC, and carbonyl compounds. During the second year, real-time measurements of carbon, carbon dioxide, and total hydrocarbons were made to determine when and for how long the emissions plume infiltrates the house. Chemical mass balance modeling results using 31 NMHC species suggest that between 9 and 71% of the concentrations measured in the house during the hot-soak test and between 13 and 85% of the concentrations measured in the house during the cold-start test could be attributed to vehicle emissions infiltrating from the garage. In contrast, increases in carbonyl compound concentrations caused by the vehicle were difficult to detect above the already significant levels found in the houses.  相似文献   

4.
The effect of sampling protocol on ambient air hydrocarbon mixing ratios was examined on eight sampling days in Los Angeles during 2007 and 2008. Four protocols, which were based on previously published multi-city urban hydrocarbon studies in the United States, were compared and differences were quantified. Whole air canister samples were collected and analyzed for nonmethane hydrocarbons (NMHCs). Differing sampling protocols resulted in large differences in mixing ratios, up to an order of magnitude, for certain NMHCs on the same sampling day. However, the magnitude of the variability between NMHC levels obtained by the four protocols was not consistent throughout the eight sampling days. It was found that sampling time, followed by sampling location, had the greatest influence on the magnitude of the mixing ratio. Ratios between hydrocarbons, often used in urban studies to gain information on emission sources, also varied depending on the protocol used. Comparison of absolute NMHC mixing ratios collected in urban environments using differing sampling protocols should be made with care.  相似文献   

5.
We present a study of the seasonal and diurnal variability of carbon monoxide and selected volatile organic compounds in the Los Angeles area. Measurements were made during four different nine-day field campaigns in April/May, September, and November, 2007, and February, 2008, at the Mt. Wilson sampling site, which is located at an elevation of approximately 1700 m in the San Gabriel Mountains overlooking Pasadena and the Los Angeles basin. The results were used to characterize the Mt. Wilson site as a representative location for monitoring integrated Los Angeles basin emissions, and, by reference to carbon monoxide emissions, to estimate average annual emissions. The considerable seasonal variability of many hydrocarbons, in both their measured mixing ratios and their relationship to carbon monoxide, was indicative of variable source strengths. Most interestingly, perturbation of C4 hydrocarbon ratios suggested an enhanced role for chlorine chemistry during the month of September, likely as the result of Los Angeles’ coastal location. Such coastal influence was confirmed by observations of enhanced mixing ratios of marine halocarbons, as well as air mass back trajectories.  相似文献   

6.
Simultaneous measurements of individual hydrocarbons and individual carbonyls were carried out at a downtown Los Angeles location. Concentrations are presented for 50 compounds in morning air samples. While paraffins (C ≥ 4) were a major hydrocarbon subclass on a ppmC basis, higher aromatics (C ≥ 8) were the major component when taking reactivity considerations into account. Comparison of the results with emission inventory data showed good agreement for many hydrocarbons and for paraffins as a subclass. Measured olefins and aromatics concentrations were substantially lower and higher, respectively, than those expected from inventory data.  相似文献   

7.
EPA Reference Method 25 for measurement of total gaseous nonmethane organics as carbon in source emissions was evaluated in the laboratory and through field testing. Laboratory evaluation included development and testing of a nonmethane organic analyzer. In addition, a series of tests was performed on the condensate trap recovery system. The tests involved evaluation of two different condensate trap recovery system designs. The first design was very similar to the Federal Register design and the second design was a modified system for minimizing interference from trapped carbon dioxide. Field testing of the method was performed at two different printing plants. Both plants used carbon bed adsorption for solvent recovery and control of VOC emissions. Samples were collected from the inlet and outlet streams of adsorption units at both plants. In addition to Method 25 samples, Method 18 samples were collected for analysis by gas chromatography with flame ionization detection. The results of all the laboratory and field test samples are described.  相似文献   

8.
Lead concentrations in air were measured at 12 sites in Detroit, New York and Los Angeles as part of a program to relate automobile emissions and polynuclear aromatic hydrocarbons in air. The information on lead is reported separately because of the current interest in lead as an air pollutant. Sampling was conducted by means of a large “absolute” filter and equipment contained in a step-van truck. A portion of the filter was macerated in nitric acid and the lead determined spectrographically. The combined annual average lead concentration for four sites in metropolitan Los Angeles was approximately 40% higher than the combined averages of either the five sites in metropolitan New York or the three sites in metropolitan Detroit. Concentrations ranged from 0.4 ug/M3 at Santa Monica, to 18.4 ug/M3 at a Los Angeles Freeway Interchange. Concentrations were generally highest in freeway areas, intermediate in commercial areas, and lowest in residential areas. They were about 40% higher in daytime than at night. Average lead concentrations were highest during autumn in New York and winter in Los Angeles reflecting an inverse relationship with wind speed. Correlation coefficients between lead and carbon monoxide, at all sites, were statistically non-zero with 99% confidence and varied from 0.75 to 0.96. Lead concentrations in this study were higher than concentrations reported by others for Detroit, New York, and Los Angeles, presumably because sampling in this study was closer to traffic. However, concentrations in this study were lower than in-traffic concentrations given in the literature.  相似文献   

9.
2,2,4-trimethyl, 1,3-pentanediol monoisobutyrate (TPM) is a widely used solvent found in water-based coatings. Ambient measurements of TPM are reported here for the first time. Although this compound has been previously measured in indoor air, this study illustrates successful detection and quantification of TPM in ambient air at three locations in Southern California: Pico Rivera, Azusa, and Riverside. TPM was detected in every sample collected, with concentrations ranging from 0.7 to 49.5 parts per trillion (ppt). Collections took place during summer 2009, fall 2009, winter 2009/2010, and spring 2010, for 5–7 days during each season. The highest mean concentrations were observed during the summer months for each city, when coating activities are typically at their highest.

Implications 2,2,4-Trimethyl, 1,3-pentanediol monoisobutyrate (TPM) is a widely used solvent found in water-based coatings. Ambient measurements of TPM are reported here for the first time. The highest mean concentrations were observed during the summer months for each city, when coating activities are typically at their highest. Unreacted TPM constitutes approximately 0.01% of the total nonmethane hydrocarbon (NMHC) concentrations in the Los Angeles air basin and given its slow reactivity rate in forming ozone, this would be an approximate upper limit for the fraction of ozone that it is responsible for forming.  相似文献   

10.
A research project has been under way to investigate air pollution problems in Los Angeles County with the help of the data supplied by the Los Angeles County Air Pollution Control District. These data consist of measurements of primary pollutants such as nitric oxide, hydrocarbons, carbon monoxide, sulfur dioxide and particu-lates, and secondary pollutants such as ozone and nitrogen dioxide, recorded hourly at a number of different stations in Los Angeles County over the past seventeen years. This present discussion deals in a preliminary way with a particular aspect of this analysis, namely, the occurrence of photochemical smog in Los Angeles. The paper is divided into two main sections. The first is intended to provide a brief survey of the problem of photochemical smog in Los Angeles as presently understood in relation to the available field data and also in relation to chamber experiments which have been run in various laboratories. The second part of the paper discusses a class of intervention problems that arise in studying the data. It is noted that parallel problems occur in the study of other ecological material and elsewhere. Statistical methods for dealing with this class of problems are illustrated with some of the Los Angeles data.  相似文献   

11.
This paper discusses the development of a high-temperature subtractive analyzer for separating the hydrocarbons present in gaseous mixtures into two categories— reactive hydrocarbons and unreactive hydrocarbons. The analyzer utilizes the ability of selected substances to absorb certain groups of hydrocarbons and their derivatives from a gas mixture and is designed for operation with a flame ion-ization detector. The body of information presented in this paper is directed to individuals concerned with the analysis of the exhaust gases of gas turbine engines or other combustion sources as stationary power plants. The analyzer grew out of an investigation of a previously reported subtractive analyzer system which operates at ambient temperature. Current state-of-the-art requirements for the accurate determination of total hydrocarbons at the concentrations present in turbine exhaust gases necessitate that sampling and measurements be conducted at elevated temperatures (325-375°F), rather than ambient temperature, to reduce or eliminate condensation and wall adsorption sampling errors. To fulfill this requirement, the sampling lines and flame ionization detector must be heated. After tests determined that the previously reported scrubber system would not remove the same hydrocarbons at elevated temperature levels as it did at ambient temperatures, an investigation of the effectiveness of various absorbents at elevated temperatures was conducted. This led to the development and test of the high-temperature subtractive analyzer concept discussed in this report. In its final form, one path of this unit contains no absorbent, the second contains a column of concentrated H2SO4 on Ultraport and a column containing PdSO4 and H2SO4 on Ultraport. The two columns are connected in series. The absorbents remove olefins, aromatics, acetylene, and oxygenated hydrocarbons but pass paraffins. As the final step in this program, a comparison of the two subtractive analyzers was made using the exhaust from a gas turbine combustion system.  相似文献   

12.
Air quality is shown as a function of averaging times of five minutes to one year for carbon monoxide, hydrocarbons, nitric oxide, nitrogen dioxide, nitrogen oxides, oxidant, and sulfur dioxide in Chicago, Cincinnati, Los Angeles, New Orleans, Philadelphia, San Francisco, and Washington, D. C. Concentrations are approximately lognormally distributed for all pollutants in all cities for all averaging times. Maximum concentration is inversely proportional to averaging time to an exponent. The exponent is a function of the standard geometric deviation. General air quality and control parameters are derived and shown for one example, nitrogen oxides in Washington, D. C. These values are compared to one air quality standard.  相似文献   

13.
It is important in the implementation of the air quality standard for ozone/oxidants and non-methane hydrocarbons to develop quantitative relationships between these pollutants in air quality regions. Analyses for ambient air non-methane hydrocarbon give a direct measure of the progress in control of hydrocarbon emissions and in the reduction of oxidant/ozone concentration levels. Total hydrocarbon concentrations are much more available than non-hydrocarbon levels. An empirical relationship between total hydrocarbons and non-methane hydrocarbons has been obtained from measurements at both west and east coast sites in the U. S. The comparability of measurements from flame ionization analyzers and gas chromatography has been demonstrated. Either analytical technique can be applied to samples collected at monitoring sites to provide the 6-9 A.M. non-methane hydrocarbon aerometric results specified in the air quality standards.  相似文献   

14.
Carbon monoxide exposures to commuters were simulated in a 5-day study in Los Angeles County. Exposures were determined by measuring CO in three vehicles as they traveled typical commuter routes. The data collected during this study include measurements of vehicle speed and CO measurements in the interior and exterior of the three vehicles during the morning and evening peak traffic periods. In addition, hourly averaged CO measurements were taken from eight south coastal Air Quality Management District fixed-site monitoring stations and six California Department of Transportation vans in the proximity of the commuter routes. These data were used to investigate the relationship of CO exposures to meteorological parameters, fixed-site monitors, and traffic conditions.

The average ratio of interior CO concentrations to exterior CO concentrations was 0.92. Concentrations inside and outside the vehicles remained about the same even when the vehicles were driven with vents closed and windows up. Smoking was not permitted in the vehicles during the study. The average ratio of the hour average CO concentrations in the vehicles to fixed-site measurements was 3.9. However, this ratio decreases with increasing ambient CO levels. Although CO levels in the vehicles frequently exceeded 40 ppm and sometimes exceeded 60 ppm, the hour average CO concentrations did not exceed 35 ppm. Slow moving congested traffic is associated with higher CO levels in the vehicles than a high volume of traffic moving at a steady speed.  相似文献   

15.
Ambient air samples from various studies were analyzed for a specific set of trace-level volatile organic compounds by using a gas chromatograph (GC) equipped with a flame ionization detector (FID) in parallel with an electron capture detector (ECD). The samples were then reanalyzed on a second GC system equipped with a mass selective detector (MSD). GC-FID/ECD data were compared to the nominally correct GC-MSD data to determine the accuracy of the nonspecific detectors, which often do not differentiate the targeted compound from Interfering compounds. Qualitative accuracy (capability for correctly identifying compounds on the basis of retention time only) and quantitative accuracy (capability for correctly measuring the concentration of an identified compound on the basis of peak area) were evaluated. Data are presented on a per-compound basis to provide the combined typical results from air samples collected in three geographic regions: Kanawha Valley, WV; Los Angeles, CA, area; and Houston, TX.  相似文献   

16.
Samples of ASTM type A jet fuel were analyzed for trace element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vanadium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas. concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.  相似文献   

17.
18.
19.
The relation of ambient levels of hydrocarbons to the products of atmospheric photochemistry has proved to be an elusive problem. Models to account for the photochemical processes are available based on laboratory examination of simulated atmospheres. Likewise, dispersion models are available which, for nonreacting species, can predict air quality given knowledge of emission rates and meteorological variables. However, integration of the dispersion model with the photochemical model is as yet an unsolved problem. In this study an empirical approach was applied in which the only assumption made was that there exists a relationship between early morning average hydrocarbon concentrations and subsequent maximum hourly average oxidant concentrations. A direct examination of all available days in several cities shows that, at any given hydrocarbon level, there exists a limit on the amount of oxidant which can be generated. Specifically it shows that the average 6:00–9:00 A.M. concentration of 0.3 ppm C nonmethane hydrocarbon can be expected to produce a maximum hourly average oxidant concentration of up to 0.1 ppm.  相似文献   

20.
Pollutant data from the Los Angeles Basin were analyzed for weekday-weekend differences for the smog months of June through September 1972 and 1973. The pollutants investigated were oxidant, NO, NO2, total hydrocarbons (HC), CO, and particulates. In order to maintain the diurnal variation, the concentration percentiles were calculated for each weekday and weekend hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号