首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM10 and PM2.5 increased with increasing load. The LPNE was 3.5 mg tire−1 km−1 for a two wheeler and 6.4 mg tire−1 km−1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM10 and PM2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM10 was present below 1 μm. The number as well as mass size distribution for PM10 was observed to be bi-modal with peaks at 0.3 μm and 4–5 μm. The NE emissions did not show any significant trend with change in tire pressure.  相似文献   

2.
This review summarizes the existing knowledge on the occurrence of tire wear particles in the environment, and their ecotoxicological effects. A meta-analysis on tire components in the environment revealed that tire wear particles are present in all environmental compartments, including air, water, soils/sediments, and biota. The maximum Predicted Environmental Concentrations (PECs) of tire wear particles in surface waters range from 0.03 to 56 mg l−1 and the maximum PECs in sediments range from 0.3 to 155 g kg−1 d.w. The results from our previous long-term studies with Ceriodaphnia dubia and Pseudokirchneriella subcapitata were used to derive Predicted No Effect Concentrations (PNECs). The upper ranges for PEC/PNEC ratios in water and sediment were >1, meaning that tire wear particles present potential risks for aquatic organisms. We suggest that management should be directed towards development and production of more environmentally friendly tires and improved road runoff treatment.  相似文献   

3.
Abstract

Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 μm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7?2.2 ppm, 3.4?10.0 μg/m3, 1.3?2.0 × 105/cm3, and 30.2?64.6 μ/m3, respectively.

For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6–220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 × 105/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.  相似文献   

4.
Plant species release appreciable quantities of volatile organic substances to the atmosphere. The major compounds emitted are monoterpenes (C10) like α-pinene, β-pinene, and limonene and the hemiterpene (C5) isoprene. The rate of emission of isoprene is light dependent and ranges between 0.04 to 2.4 ppb/cm2/min/l for oak, cottonwood, and eucalyptus foliage. The rate of emission of a- and/3-pinene and limonene is dependent on the rate of transpiration, structural integrity of the oil cells and resin glands, and temperature of the foliage. Rates of emission for conifer foliage range from 0.4 to 3.5 ppb/g/min/l. An inventory of North American forest regions for the frequency of occurrence of these chemicals released by different tree species showed that 15% was the lowest value for a specific forest-type that emitted terpenes to the atmosphere. More commonly 100% of the trees of a given forest-type emitted terpenes to the atmosphere. An average of 70% is typical of the United States forested regions as a whole. The annual contribution of forest hydrocarbon emissions to the air pollution problem on a global basis is reflected in the 175 × 106 tons of reactive hydrocarbons from tree foliage sources compared to the 27 × 106 tons from man’s activities; in other words, there is a 6.2-fold greater emission level from natural sources than from man made sources. The fate of these gaseous olefins in the atmosphere is undetermined.  相似文献   

5.
Recent studies have shown clear contributions of non-exhaust emissions to the traffic related PM10 load of the ambient air. These emissions consist of particles produced by abrasion from brakes, road wear, tire wear, as well as vehicle induced resuspension of deposited road dust. The main scope of the presented work was to identify and quantify the non-exhaust fraction of traffic related PM10 for two roadside locations in Switzerland with different traffic regimes. The two investigated locations, an urban street canyon with heavily congested traffic and an interurban freeway, are considered as being typical for Central Europe. Mass-relevant contributions from abrasion particles and resuspended road dust mainly originated from particles in the size range 1–10 μm. The results showed a major influence of vehicle induced resuspension of road dust. In the street canyon, the traffic related PM10 emissions (LDV: 24 ± 8 mg km?1 vehicle?1, HDV: 498 ± 86 mg km?1 vehicle?1) were assigned to 21% brake wear, 38% resuspended road dust and 41% exhaust emissions. Along the freeway (LDV: 50 ± 13 mg km?1 vehicle?1, HDV: 288 ± 72 mg km?1 vehicle?1), respective contributions were 3% brake wear, 56% resuspended road dust and 41% exhaust emissions. There was no indication for relevant contributions from tire wear and abrasion from undamaged pavements.  相似文献   

6.
Wik A  Dave G 《Chemosphere》2006,64(10):1777-1784
Large amounts of tire rubber are deposited along the roads due to tread wear. Several compounds may leach from the rubber and cause toxicity to aquatic organisms. To investigate the toxic effects of tire wear material from different tires, rubber was abraded from the treads of twenty-five tires. Leachates were prepared by allowing the rubber to equilibrate with dilution water at 44 degrees C for 72 h. Then the rubber was filtered from the leachates, and test organisms (Daphnia magna) were added. Forty-eight hour EC50s ranged from 0.5 to >10.0 g l(-1). The toxicity identification evaluation (TIE) indicated that non-polar organic compounds caused most of the toxicity. UV exposure of the filtered tire leachates caused no significant increase in toxicity. However, when tested as unfiltered leachates (the rubber was not filtered from the leachates before addition of D. magna) photo-enhanced toxicity was considerable for some tires, which means that test procedures are important when testing tire leachates for aquatic (photo) toxicity. The acute toxicity of tire wear for Daphnia magna was found to be <40 times a predicted environmental concentration based on reports on the concentration of a tire component found in environmental samples, which emphasizes the need for a more extensive risk assessment of tire wear for the environment.  相似文献   

7.
In order to investigate the chemical characteristics of atmospheric aerosol measured during a severe winter haze event, 12-hr PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) samples were collected at an urban site in Ulaanbaatar, Mongolia, from January 9 to February 17, 2008. On average, 12-hr PM2.5 mass concentration was 105.1 ± 34.9 μg/m3. Low PM2.5 mass concentrations were measured when low pressure developed over central Mongolia. The 12-hr average organic mass by carbon (OMC) varied from 6.4 to 132.3 μg/m3, with a mean of 54.9 ± 25.4 μg/m3, whereas elemental carbon (EC) concentration ranged from 0.1 to 3.6 μgC/m3, with a mean of 1.5 ± 0.8 μgC/m3. Ammonium sulfate was found to be the most abundant water-soluble ionic component in Ulaanbaatar during the sampling period, with an average concentration of 11.3 ± 5.0 μg/m3. In order to characterize the effect of air mass pathway on fine particulate matter characteristics, 5-day back-trajectory analysis was conducted, using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The haze level was classified into three categories, based on the 5-day air mass back trajectories, as Stagnant (ST), Continental (CT), and Low Pressure (LP) cases. PM2.5 mass concentration during the Stagnant condition was approximately 2.5 times higher than that during the Low Pressure condition, mainly due to increased pollutant concentration of OMC and secondary ammonium sulfate.

Implications: Mongolia is experiencing rapid rates of urbanization similar to other Asian countries, resulting in air pollution problems by the growing number of automobiles and industrialization. Ulaanbaatar, capital of Mongolia, is inherently vulnerable to air pollution because of its emission sources, topography, and meteorological characteristics. Very limited measurements on chemical characteristics of particulate matter have been carried out in Ulaanbaatar, Mongolia.  相似文献   

8.
Formaldehyde and acetaldehyde are two most abundant carbonyls in ambient air. Biogenic emission has been proposed as a significant source other than anthropogenic emissions and atmospheric secondary formation. Here at a forest site in South China, the carbon isotopic compositions of formaldehyde and acetaldehyde emitted from leaves of three tree species (Litsea rotundifolia, Canarium album and Castanea henryi) were measured in comparison with the bulk carbon isotopic compositions of tree leaves. δ13C data of the emitted aldehydes (from ?31‰ to ?46‰) were quite different for tree species, which were all more depleted in 13C than the tree-leaf bulk δ13C values (from ?27‰ to ?32‰). Formaldehyde in ambient air at the forest site had δ13C values different from those of leaf-emitted formaldehyde, indicating other sources for ambient formaldehyde apart from direct emission from leaves, most probably the photooxidation of biogenic hydrocarbon like isoprene and monoterpene. The δ13C differences of acetaldehyde between ambient data and those of tree leaves emission were less than 1‰, implying direct biogenic emission as the dominant source.  相似文献   

9.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

10.
Abstract

Road dust contributes a large percentage of the atmosphere’s suspended particles in Taiwan. Three road dust samples were collected from downtown, electrical park, and freeway tunnel areas. A mechanical sieve separated the road dust in the initial stage. Particles >100 μm were 75%, 70%, and 60% (wt/wt), respectively, of the samples. Those particles <37 μm were resuspended in another mixing chamber and then collected by a Moudi particle sampler. The largest mass fraction of resuspended road dust was in the range of 1–10 μm. Ultrafine particles (<1 μm) composed 33.7, 17, and 7.4% of the particle samples (downtown, electrical park, and freeway tunnel, respectively). The road dust compositions were analyzed by inductively coupled plasma (ICP)-atomic emissions spectroscopy and ICP-mass spectrometry. The highest concentration fraction contained more aluminum (Al), iron (Fe), calcium (Ca), and potassium than other elements in the road dust particle samples. Additionally, the sulfur (S) content in the road dust from the electrical park and freeway tunnel areas was 2.1 and 3.4 times the downtown area sample, respectively. The sulfur originated from the vehicle and boiler oil combustion and industrial manufacturing processes. Furthermore, zinc (Zn) concentration in the tunnel dust was 2.6 times that of the downtown and electrical park samples, which can be attributed to vehicle tire wear and tear. Resuspended road dusts (<10 μm) from the downtown and freeway tunnel areas were principally 2.5–10 μm Al, barium (Ba), Ca, copper (Cu), Fe, magnesium (Mg), sodium (Na), antimony (Sb), and Zn, whereas arsenic (As), chromium (Cr), and nickel (Ni) were predominant in the ultrafine particle samples (<1 μm). Al, Ba, and Ca are the typical soil elements in coarse particles; and As, and Cr and Ni are the typical fingerprint of oil combustion and vehicle engine abrasion in ultrafine particles. There was a special characteristic of resuspension road dust at electrical park, that is, many elements, including As, Ba, Ca, cadmium, Cr, Cu, Fe, manganese (Mn), Ni, lead (Pb), S, vanadium (V), and Zn, were major in ultrafine particles. These elements should be attributed to the special manufacturing processes of electric products.  相似文献   

11.
Abstract

Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (<100 µm) concentrations at the boundary of gravel sites ranged from 280 to 1290 µg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 µg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 µg/m3, were also above the daily air quality standard of 125 µg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 µg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 µm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

12.
Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47 × 107 particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated.

Implications:?A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.  相似文献   

13.
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

14.
Comparisons of measured and model-predicted atmospheric copper concentrations show a severe underestimation of the observed concentrations by the models. This underestimation may be (partly) due to underestimated emissions of copper to air. Since the phase out of asbestos brake lining material, the composition of brake lining material has changed and may contain up to ∼15% copper. This makes brake wear from vehicles potentially an important source of atmospheric (particulate) copper concentrations. In this paper, we reassess the copper emissions due to exhaust emissions and brake wear from road transport. Overall, our reassessments result in an estimate of total copper emission to air in UNECE-Europe of 4.0–5.5 ktonnes yr−1, which is substantially higher than the previous estimate of 2.8 ktonnes yr−1. Copper concentrations over Europe are calculated with the LOTOS-EUROS model using the revised emission data as model input. The results show that the revised emission estimates are a major step towards gap closure of predicted versus observed copper concentrations in ambient air. Brake wear emissions may be responsible for 50–75% of the total copper emissions to air for most of Western Europe. The hypothesis that road transport is an important source of copper emissions is tested and confirmed by (1) reviewing available literature data of chemically speciated PM data from road tunnel studies and (2) the gradient observed in copper concentrations from ambient PM monitoring going from rural sites to street stations. The literature review and observational data suggest that the majority of the emitted PM10 brake wear particles is in the PM2.5–10 size range. The results of this study indicate that modification of brake lining composition is an important mitigation option to reduce copper exposure of the population in Western Europe.  相似文献   

15.
Shin SH  Jo WK 《Chemosphere》2012,89(5):569-578
The present study investigated the indoor concentrations of selected volatile organic compounds (VOCs) and formaldehyde and their indoor emission characteristics in newly-built apartments at the pre-occupancy stage. In total, 107 apartments were surveyed for indoor and outdoor VOC concentrations in two metropolitan cities and one rural area in Korea. A mass balanced model was used to estimate surface area-specific emission rates of individual VOCs and formaldehyde. Seven (benzene, ethyl benzene, toluene, m,p-xylene, o-xylene, n-hexane, and n-heptane) of 40 target compounds were detectable in all indoor air samples, whereas the first five were detected in all outdoor air samples. Formaldehyde was also predominant in the indoor air samples, with a high detection frequency of 96%. The indoor concentrations were significantly higher than the outdoor concentrations for aromatics, alcohols, terpenes, and ketones. However, six halogenated VOCs exhibited similar concentrations for indoor and outdoor air samples, suggesting that they are not major components emitted from building materials. It was also suggested that a certain portion of the apartments surveyed were constructed by not following the Korean Ministry of Environment guidelines for formaldehyde emissions. Toluene exhibited the highest emission rate with a median value of 138 μg m−2 h−1. The target compounds with median emission rates greater than 20 μg m−2 h−1 were toluene, 1-propanol, formaldehyde, and 2-butanone. The wood panels/vinyl floor coverings were the largest indoor pollutant source, followed by floorings, wall coverings, adhesives, and paints. The wood panels/vinyl floor coverings contributed nearly three times more to indoor VOC concentrations than paints.  相似文献   

16.
Wik A  Dave G 《Chemosphere》2005,58(5):645-651
Car tires contain several water-soluble compounds that can leach into water and have toxic effects on aquatic organisms. Due to tire wear, 10,000 tonnes of rubber particles end up along the Swedish roads every year. This leads to a diffuse input of emissions of several compounds. Emissions of polyaromatic hydrocarbons (PAHs) are of particular concern. PAHs are ingredients of the high aromatic oil (HA oil) that is used in the rubber as a softener and as a filler. The exclusion of HA oils from car tires has started, and an environmental labeling of tires could make HA oils obsolete. The toxicity to Daphnia magna from 12 randomly selected car tires was tested in this study. Rubber from the tread of the tires was grated into small pieces, to simulate material from tire wear, and the rubber was equilibrated with dilution water for 72 h before addition of test organisms. The 24-h EC50s of the rubber pieces ranged from 0.29 to 32 gl-1, and the 48-h EC50s ranged from 0.0625 to 2.41 gl-1. Summer tires were more toxic than winter tires. After the 48-h exposure, the daphnids were exposed to UV-light for 2 h, to determine if the tires contained compounds that were phototoxic. After UV-activation the EC50s ranged from 0.0625 to 0.38 gl-1. Four of the 12 tires had a very distinct photoactivation, with a toxicity increase of >10 times. This study has shown that the used method for toxicity testing with Daphnia magna according to ISO 6341 could be used as a basis for environmental labeling of car tires.  相似文献   

17.
Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s?1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m?2 h?1 and 12 h cumulative emission ranged from 8.5 to 260 g m?2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.  相似文献   

18.
In 1997, Homeswest in western Australia and Murdoch University developed a project to construct low-allergen houses (LAHs) in a newly developed suburb. Before the construction of LAHs, all potential volatile organic compound (VOC) emission materials used in LAHs are required to be measured to ensure that they are low total VOC (TVOC) emission materials. This program was developed based on this purpose. In recent times, the number of complaints about indoor air pollution caused by VOCs has increased. A number of surveys of indoor VOCs have indicated that many indoor materials contribute to indoor air pollution. Although some studies have been conducted on the characteristics of VOC emissions from adhesives, most of them were focused on VOC emissions from floor adhesives. Few measurements of VOC emissions from adhesives used for wood, fabrics, and leather are available. Furthermore, most research on VOC emissions from adhesives has been done in countries with cool climates, where ventilation rates in the indoor environment are lower than those in Mediterranean climates, due to energy conservation. VOCs emitted from adhesives have not been sufficiently researched to prepare an emission inventory to predict indoor air quality and to determine both exposure levels for the Australian population and the most appropriate strategies to reduce exposure. An environmental test chamber with controlled temperature, relative humidity, and airflow rate was used to evaluate emissions of TVOCs from three adhesives used frequently in Australia. The quantity of TVOC emissions was measured by a gas chromatography/flame ionization detector. The primary VOCs emitted from each adhesive were detected by gas chromatography/mass spectrometry. The temporal change of TVOC concentrations emitted from each adhesive was tested. A double-exponential equation was then developed to evaluate the characteristics of TVOC emissions from these three adhesives. With this double-exponential model, the physical processes of TVOC emissions can be explained, and a variety of emission parameters can be calculated. These emission parameters could be used to estimate real indoor TVOC concentrations in Mediterranean climates.  相似文献   

19.
Abstract

Fugitive dust emission from limestone extraction areas is a significant pollution source. The cracking operation in limestone extraction areas easily causes high total suspended particulate (TSP) concentrations in the atmosphere, occasionally exceeding the 1-hr national emission standard of Taiwan (500 μg/m3). The concentration and size distribution were measured at different distances (0.05–15 km) in the extraction areas. The highest hourly concentrations of TSP, PM10 (suspended particulate matter [PM] smaller than 10 μm), and PM2.5 (suspended PM smaller than 2.5 μm) are 1111, 825, and 236 μg/m3, respectively, during the cracking process. Measurement results obtained from the Micro-Orifice Uniform Deposit Impactor indicated that the mass median aerodynamic diameter is ~0.7 μm, with the geometric standard deviation exceeding 7. In addition, the emission factors are 0.143 and 0.211 kg/t for both vertical well and stair extraction operations, respectively. Experimental results demonstrate that the corresponding TSP control efficiencies for spraying water, planting grass, setting short walls, paving gravel roads, and establishing vertical well transportation are ~55, 50, 44, 22, and 30%, respectively. Furthermore, the PM10 control efficiencies are ~45, 41, 54, 35, and 30%, respectively, whereas the PM2.5 control efficiencies are roughly 23, 31, 15, 11, and 10%, individually.  相似文献   

20.
Urban particulate matter (PM), asphalt, and tire samples were investigated for their content of benzothiazole and benzothiazole derivates. The purpose of this study was to examine whether wear particles, i.e., tire tread wear or road surface wear, could contribute to atmospheric concentrations of benzothiazole derivatives. Airborne particulate matter (PM10) sampled at a busy street in Stockholm, Sweden, contained on average 17 pg/m3 benzothiazole and 64 pg/m3 2-mercaptobenzothiazole, and the total suspended particulate-associated benzothiazole and 2-mercaptobenzothiazole concentrations were 199 and 591 pg/m3, respectively. This indicates that tire tread wear may be a major source of these benzothiazoles to urban air PM in Stockholm. Furthermore, 2-mercaptobenzothiazole was determined in urban air particulates for the first time in this study, and its presence in inhalable PM10 implies that the human exposure to this biocide is underestimated. This calls for a revision of the risk assessments of 2-mercaptobenzothiazole exposure to humans which currently is limited to occupational exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号