首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on CO, NO, NO2 and O3 concentrations measured in Buenos Aires city using a continuous monitoring station are reported. This is the first systematic study of this kind carried out in the city, which is, together with its surroundings, the third more populated in Latin America. Measurements were performed during 12 months in one of the principal avenues near downtown. Results indicate that vehicular traffic is the principal source of CO and NOx. The concentration of O3 is generally quite low and results from the mixing of clean air masses with exhaust gases containing high amounts of NO. The monthly averages of CO and NO decrease from Winter to Summer in correlation with the increase of the mean wind speed and average temperature. These results are compared with previous measurements on the spatial distribution of NO2 in the whole city using passive diffusion tubes and with the concentration of CO, which is being continuously registered since several years in the downtown area. Measurements performed at a green, windy, low traffic area beneath the La Plata river are also shown.  相似文献   

2.
The reliability and validity of gas turbine engine exhaust measurements are of concern to all who measure these effluents. In the past, one measure of reliability has been a carbon balance between the fuel used and the C, CO, hydrocarbons, and CO2 emitted which requires that a F/A ratio be known accurately and that the analyzed sample be representative. In addition to this carbon balance, we have considered the relationships between the concentrations of the several component species. For example, the plot of volume percent of CO2 versus the volume percent of O2, both properly corrected to complete combustion, is a straight line. The intercept on the Y-axis (zero oxygen) is a function of the H to C mole ratio in the fuel. This relation has been theoretically established and also established by empirical calculations. For all valid measurements, all points corresponding to CO2 and O2 analyses fall on the straight line. In addition, smooth functional relationships exist between other exhaust gas constituents as well, although the form is not a simply derivable linear relationship like that for O2-CO2. We have found it useful to employ the following correlations: CO2 vs. log NOx, log CO vs. log THC, log CO vs. CO2, and log THC vs. CO2- These relationships serve to indicate the probability of reliable data and point out sampling problems and instrument problems such as drift. Subtle changes in engine operation such as opening of the accessory bleed ports in the compressor discharge of the engine can be detected.

The use of a combination of these curves can serve to indicate which measurement is in error. If the O2-CO2 relation is linear and the CO-CO2 relation is smooth, then problems with the total hydrocarbon analyses are indicated when the CO-THC relation is erratic. This would be confirmed by a similar CO2-THC plot. No useful smooth relationship between smoke density measurements and the other constituents has been found to date. This may indicate poor data, lack of sufficient data, or possibly no correlation.  相似文献   

3.
The two methods normally used for the analysis of NOx are the Saltzman and the phenoldisulfonic acid technique. This paper describes an evaluation of these wet chemical methods to determine their practical application to engine exhaust gas analysis. Parameters considered for the Saltzman method included bubbler collection efficiency, NO to NO2 conversion efficiency, masking effect of other contaminants usually present in exhaust gases and the time-temperature effect of these contaminants on stored developed solutions. Collection efficiency and the effects of contaminants were also considered for the phenoldisulfonic acid method. Test results indicated satisfactory collection and conversion efficiencies for the Saltzman method, but contaminants seriously affected the measurement accuracy particularly if the developed solution was stored for a number of hours at room temperature before analysis. Storage at 32°F minimized effect. The standard procedure for the phenoldisulfonic acid method gave good results, but the process was found to be too time consuming for routine analysis and measured only total NOx.  相似文献   

4.
The effects of two alternative sources of animal fat-derived biodiesel feedstock on CO2, CO, NOx tailpipe emissions as well as fuel consumption were investigated. Biodiesel blends were produced from chicken and swine fat waste (FW-1) or floating fat (FW-2) collected from slaughterhouse wastewater treatment processes. Tests were conducted in an unmodified stationary diesel engine operating under idling conditions in attempt to simulate slow traffic in urban areas. Significant reductions in CO (up to 47% for B100; FW-2) and NOx (up to 20% for B5; FW-2 or B100; FW-1) were attained when using biodiesel fuels at the expense of 5% increase in fuel consumption. Principal component analysis (PCA) was performed to elucidate possible associations among gas (CO2, CO, and NOx) emissions, cetane number and iodine index with different sources of feedstock typically employed in the biodiesel industry. NOx, cetane number and iodine index were inversely proportional to CO2 and biodiesel concentration. High NOx emissions were reported from high iodine index biodiesel derived especially from forestry, fishery and some agriculture feedstocks, while the biodiesel derived from animal sources consistently presented lower iodine index mitigating NOx emissions. The obtained results point out the applicability of biodiesel fuels derived from fat-rich residues originated from animal production on mitigation of greenhouse gas emissions. The information may encourage practitioners from biodiesel industry whilst contributing towards development of sustainable animal production.

Implications: Emissions from motor vehicles can contribute considerably to the levels of greenhouse gases in the atmosphere. The use of biodiesel to replace or augment diesel can not only decrease our dependency on fossil fuels but also help decrease air pollution. Thus, different sources of feedstocks are constantly being explored for affordable biodiesel production. However, the amount of carbon monoxide (CO), carbon dioxide (CO2), and/or nitrogen oxide (NOx) emissions can vary largely depending on type of feedstock used to produce biodiesel. In this work, the authors demonstrated animal fat feasibility in replacing petrodiesel with less impact regarding greenhouse gas emissions than other sources.  相似文献   


5.
ABSTRACT

To explore environmentally benign solvents for the absorption of NO and NO2, a series of caprolactam tetrabutyl ammonium halide ionic liquids were synthesized. The solubility of NO and NO2 was measured at temperatures ranging from 298.2 to 363.2 K and atmospheric pressure, and the following trend in the solubility of NO and NO2 in ionic liquids with various halide anions was observed, respectively: F > Br > Cl and Br > Cl > F. Moreover, as the temperature increased from 308.15 to 363.15 K and the mole ratio of caprolactam increased from 2:1 to 6:1, the solubility of NO increased. Alternatively, the solubility of NO2 decreased as the temperature increased from 298.15 to 363.15 K, and the mole ratio of caprolactam increased from 2:1 to 6:1. The absorption and desorption of NO and NO2 was practically reversible in the ionic liquids, which was characterized by nuclear magnetic resonance. The method, which is at least partially reversible, offers interesting possibilities for the removal of NO and NO2.

IMPLICATIONS Basic ionic liquids with amino groups were synthesized and used to capture CO2, SO2, and H2S, and to promote hydrogenation of CO2. In this paper, the authors used caprolactam tetrabutyl ammonium halide ionic liquid (IL) as absorbing medium in which NOx could be absorbed. NOx desorbed from the absorbent could be efficiently reduced by right catalysts at high temperature. The absorbed NO and NO2 gas could be desorbed at higher temperature, allowing the ionic liquids to be reused several times without loss of capability. It was believed that caprolactam tetrabutyl ammonium bromide (CPL-TBAB) ILs may be useful for NOx removal reagent for pollution control.  相似文献   

6.
The 2009 Study of Houston Atmospheric Radical Precursors (SHARP) field campaign had several components that yielded information on the primary vehicular emissions of formaldehyde (HCHO) and nitrous acid (HONO), in addition to many other species. Analysis of HONO measurements at the Moody Tower site in Houston, TX, yielded emission ratios of HONO to the vehicle exhaust tracer species NOx and CO of 14 pptv/ppbv and 2.3 pptv/ppbv, somewhat smaller than recently published results from the Galleria site, although evidence is presented that the Moody Tower values should be upper limits to the true ratios of directly emitted HONO, and are consistent with ratios used in current standard emissions models. Several other Moody Tower emission ratios are presented, in particular a value for HCHO/CO of 2.4 pptv/ppbv. Considering only estimates of random errors, this would be significantly lower than a previous value, though the small sample size and possible systematic differences should be taken into account. Emission factors for CO, NOx, and HCHO, as well as various volatile organic compounds (VOCs), were derived from mobile laboratory measurements both in the Washburn Tunnel and in on-road exhaust plume observations. These two sets of results and others reported in the literature all agree well, and are substantially larger than the CO, NOx, and HCHO emission factors derived from the emission ratios reported from the Galleria site.

Implications: Emission factors for the species measured in the various components of the 2009 SHARP campaign in Houston, TX, including HCHO, HONO, CO, CO2, nitrogen oxides, and VOCs, are needed to support regional air quality monitoring. Components of the SHARP campaign measured these species in several different ways, each with their own potential for systematic errors and differences in vehicle fleets sampled. Comparisons between data sets suggest that differences in sampling place and time may result in quite different emission factors, while also showing that different vehicle mixes can yield surprisingly similar emission factors.  相似文献   

7.
Experiments were carried out to determine the relative chemiluminescence quenching efficiencies as a function of third body concentration for each of the common combustion products, H2O, CO2, CO, H2, O2 and Ar. These results are compared with those of other investigators. The effect of reaction chamber pressure on analyzer response and the development of an analyzer design which incorporates an adjustable sample capillary inlet capable of maintaining a constant molar flow rate of sample gas to the reaction chamber are discussed. The effect of carbon monoxide interference on chemiluminescent NOx measurement has been isolated and found to be significant. A means of correcting NO, measurements for these CO interference effects is described. Quantification of NO and NO2 absorption in liquid water in NOx sampling systems has been made. Recommendations for sample system designs to handle the presence of water in the sample gas are made.  相似文献   

8.
Abstract

In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67–86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

9.
The Environmental Protection Agency is reviewing the need for a short-term NO2 standard based on an averaging time of three hours or less. State Implementation plans and New Source Reviews will require air quality simulation techniques capable of estimating ambient NO2 concentrations. There is a need for multi-source (urban) models and for point source models.

A review of currently available techniques for the estimation of NO2 concentrations resulting from NOx point sources is presented. The available methods include simple screening techniques and refined reactive plume models. The screening techniques first use a standard gaussian dispersion model to estimate the maximum 1 hr NOx concentration caused by the source. The second step involves estimating the fraction of this NO* concentration occurring as NO2.

Reactive plume models numerically simulate the simultaneous effects of dispersion and chemistry on NO2 concentrations. Organic as well as inorganic reactions are incorporated. Reactive plume models should be used, where screening techniques indicate the potential for violation of the NO2 standard.

Current generation reactive plume models neglect the effect of turbulent concentration fluctuation on NO2 formation and use inappropriately large dispersion coefficients to estimate plume concentrations. Approaches being developed to resolve these problems are discussed.  相似文献   

10.
Abstract

A remote sensing device was used to obtain on-road and in-use gaseous emission measurements from three fleets of schools buses at two locations in Washington State. This paper reports each fleet’s carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), and nitrogen dioxide (NO2) mean data. The fleets represent current emission retrofit technologies, such as diesel particulate filters and diesel oxidation catalysts, and a control fleet. This study shows that CO and HC emissions decrease with the use of either retrofit technology when compared with control buses of the same initial emission standards. The CO and HC emission reductions are consistent with published U.S. Environmental Protection Agency verified values. The total oxides of nitrogen (NOx), NO, and the NO2/NOx ratio all increase with each retrofit technology when compared with control buses. As was expected, the diesel particulate filters emitted significantly higher levels of NO2 than the control fleet because of the intentional conversion of NO to NO2 by these systems. Most prior research suggests that NOx emissions are unaffected by the retrofits; however, these previous studies have not included measurements from retrofit devices on-road and after nearly 5 yr of use. Two 2006 model-year buses were also measured. These vehicles did not have retrofit devices but were built to more stringent new engine standards. Reductions in HCs and NOx were observed for these 2006 vehicles in comparison to other non-retrofit earlier model-year vehicles.  相似文献   

11.
ABSTRACT

This paper presents a technique for the complete, simultaneous decomposition of CO2, SO2, and NOx, as well as the simultaneous removal of fly ash by ultra-high voltage pulse activation. Ultra-high voltage narrow pulse is used to make the gases in the reactor become active molecules, which are then dissociated into nonpoisonous gas molecules and solid particles under the control of a directional reaction model. By using a sufficient charge and a strong electric field, the fly ash can be removed. It becomes the carrier of C and S, and its efficiency is 99.5%. Owing to the action of catalyst B (using Ni as the mother's body), the activation energy of CO2, SO2, and NOx gases is reduced in great magnitude, and their removal efficiency can reach 75~90% at normal pressure and 180 °C.  相似文献   

12.
The CALINE4 roadway dispersion model has been applied to concentrations of NOx and NO2 measured near Gandy Boulevard in Tampa, FL (USA) during May 2002. A NOx emission factor of 0.86 gr mi−1 was estimated by treating NO+NO2 (NOx) as a conserved species and minimizing the differences between measured and calculated NOx concentrations. This emission factor was then used to calculate NO2 concentrations using the NO/NO2 transformation reactions built into CALINE4. A comparison of measured and calculated NO2 concentrations indicates that for ambient O3 concentrations less than 40 ppb the model under-predicts the chemical transformation of NO. The enhanced transformation of NO may be due to reactions of NO with oxidants such as peroxy radicals that are present either in the atmosphere or in vehicle exhaust.  相似文献   

13.
Abstract

Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted [~20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted ~35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idleCO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased by ~100% and 70%, respectively. Six Detroit Diesel Corp. (DDC) Series 60 engines in engine test cell were found to emit less CO, NOx, and PM emissions and consumed fuel at only 75%of the level found in the chassis dynamometer data. This is because fan and compressor loads were absent in the engine test cell.  相似文献   

14.
Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO2, CO, NO, NOx, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.  相似文献   

15.
Abstract

The In-Plume Emission Test Stand (IPETS) characterizes gaseous and particulate matter (PM) emissions from combustion sources in real time. Carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and other gases are quantified with a closed-path Fourier transform infrared spectrometer (FTIR). Particle concentrations, chemical composition, and other particle properties are characterized with an electrical low-pressure impactor (ELPI), a light-scattering particle detector, an optical particle counter, and filter samples amenable to different laboratory analysis. IPETS measurements of fuel-based emission factors for a diesel generator are compared with those from a Mobile Emissions Laboratory (MEL). IPETS emission factors ranged from 0.3 to 11.8, 0.2 to 3.7, and 22.2 to 32.8 g/kg fuel for CO, NO2, and NO, respectively. IPETS PM emission factors ranged from 0.4 to 1.4, 0.3 to 1.8, 0.3 to 2.2, and 1 to 3.4 g/kg fuel for filter, photoacoustic, nephelometer, and impactor measurements, respectively. Observed linear regression statistics for IPETS versus MEL concentrations were as follows: CO slope = 1.1, r2 = 0.99; NO slope = 1.1, r2 = 0.92; and NO2 slope = 0.8, r2 = 0.96. IPETS versus MEL PM regression statistics were: filter slope = 1.3, r2 = 0.80; ELPI slope = 1.7, r2 = 0.87; light-scattering slope = 2.7, r2 = 0.92; and photoacoustic slope = 2.1, r2 = 0.91. Lower temperatures in the dilution air (~25 °C for IPETS vs. ~50 °C for MEL) may result in greater condensation of semi-volatile compounds on existing particles, thereby explaining the 30% difference for filters. The other PM measurement devices are highly correlated with the filter, but their factory-default PM calibration factors do not represent the size and optical properties of diesel exhaust. They must be normalized to a simultaneous filter measurement.  相似文献   

16.
ABSTRACT

This article presents the results of an industrial-scale study (on 400 MWe lignite fired unit) of simultaneous NOx, SO2, and HgT removal in FGD absorber with oxidant injection (NaClO2) into flue gas. It was confirmed that the injection of sodium chlorite upstream the FGD (Flue Gas Desulfurization) absorber oxidize NO to NO2, Hg0 to Hg2+, and enhancing NOx and HgT removal efficiency from exhaust gas in FGD absorber. Mercury removal efficiency grows with the rise of degree of oxidation NO to NO2 and was limited by the phenomenon of re-emission. For NOx removal the most critical parameters is slurry pH and temperature. There was no negative effect on sulfur dioxide removal efficiency caused by oxidant injection in tested FGD absorber. Based on the data provided, NOx and HgT emissions can be reduced by adjusting the FGD absorber operating parameters combined with oxidant injection.  相似文献   

17.
ABSTRACT

Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM.

Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with Health and Environment; June 30, 1999 (available from the authors).  相似文献   

18.
Within the European research project ARTEMIS, significant works have been conducted to analyse the hot emissions of pollutant from the passenger cars regarding the driving cycles and to propose modelling approaches taking into account large but heterogeneous datasets recorded in Europe. The review and analysis of a large range of test cycles enabled first the building-up of a set of contrasted cycles specifically designed for characterizing the influence of the driving conditions. These cycles were used for the measurement of the pollutants emission rates from nine passenger cars on a chassis dynamometer.Emissions measured on 30 vehicles tested on cycles adapted to their motorization (i.e., cycles for high- or low-powered cars, inducing thus a significant difference in the dynamic) were also considered for analysing the influence of the cycles and of the kinematic parameters on the hot emission rates of the regulated pollutants (CO, HC, NOx, CO2, PM). An analyses of variance demonstrated the preponderance of the driving type (urban, rural road, motorway), of the vehicle category (fuel, emission standard) and emitting status (high/normal emitter) and thus the pertinence of analysing and modelling separately the corresponding emissions. It also demonstrated that Urban driving led systematically to high diesel emission rates and to high CO2, HC and NOx emissions from petrol cars. Congested driving implied high CO2 (diesel and petrol) and high diesel NOx emission. On motorway, the very high speeds generated high CO2, while unsteady speeds induced diesel NOx and petrol CO over-emissions. A search for pertinent kinematic parameters showed that urban diesel emissions were mostly sensitive to stops and speed parameters, while petrol emissions were rather sensitive to acceleration parameters. On the motorway, diesel NOx and CO2 emissions rates increased with the speed variability and occurrence of high speeds, while CO2 and CO over-emission from petrol cars were linked to the occurrence of strong acceleration at high speeds.A modelling approach based on partial least square regression was tested, which demonstrates its ability to discriminate satisfactorily the emissions according to dynamic related parameters and in particular when considering the two-dimensionnal distribution of instantaneous speed and acceleration.Finally, a strategy was proposed to analyse the large but heterogeneous set of hot emission data collected within the ARTEMIS project. The approach consisted in analysing the similarity of the numerous cycles as regards their kinematic, grouping them into reference test patterns through an automatic clustering, and then computing reference emissions for these patterns. These principles enabled the development of a method to compute the emissions at a low spatial scale, i.e. the so-called traffic situation approach, which was implemented in the European Artemis model for estimating the cars’ pollutant emissions.  相似文献   

19.
We analyse the air quality data measured at a green area of Buenos Aires City (Argentina) during 38 days in winter. We study the relationships between ambient concentrations of nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3) and nitrogen oxides (NOx=NO+NO2). The variation of the level of oxidant (OX=O3+NO2) with the NOx is obtained. It can be seen that the level of OX at a given location is made up of two contributions: one independent and another dependent on the NOx concentration. The first one can be considered as a regional contribution, equivalent to the background O3 concentration and the second one as a local contribution that depends on the level of primary pollution. Local oxidant sources may include direct NO2 emissions, the reaction of NO with O2 at high-NOx levels, and the emission of species that promote the conversion of NO to NO2. The final category of emissions may include the nitrous acid (HONO) that is emitted directly in vehicle exhaust. Finally, we present a diurnal variation of the local as well as regional contributions and the dependence of the last one on wind direction.  相似文献   

20.
As part of a larger program to investigate indoor sources of air pollution, an indoor/outdoor sampling program was carried out for NO, NO2, and CO In four private houses which had gas stoves. The four houses chosen for study represented different surrounding land use, life styles, and house age and layout. The pollutant gases were measured essentially simultaneously at three indoor locations and one outdoor location. The results of the program showed that indoor levels of NO and NO2 are directly related to stove use in the homes tested. Furthermore, these stoves often produced more NO2 than NO. In some instances, the levels of NO2 and CO in the kitchen exceeded the air quality standards for these pollutants if such outdoor standards were to be applied to indoors and the data for the sampling periods were typical of an entire year. A diffusion experiment conducted in one of the houses showed that the half-life for NO2 was less than one-third that for either NO or CO. Oxidation of NO to NO2 (based upon comparing the half-life of NO to CO) does not appear to occur to a significant degree indoors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号