首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT

A case study was conducted to evaluate the SO2 emission reduction in a power plant in Central Mexico, as a result of the shifting of fuel oil to natural gas. Emissions of criteria pollutants, greenhouse gases, organic and inorganic toxics were estimated based on a 2010 report of hourly fuel oil consumption at the “Francisco Pérez Ríos” power plant in Tula, Mexico. For SO2, the dispersion of these emissions was assessed with the CALPUFF dispersion model. Emissions reductions of > 99% for SO2, PM and Pb, as well as reductions >50% for organic and inorganic toxics were observed when simulating the use of natural gas. Maximum annual (993 µg/m3) and monthly average SO2 concentrations were simulated during the cold-dry period (152–1063 µg/m3), and warm-dry period (239–432 µg/m3). Dispersion model results and those from Mexico City’s air quality forecasting system showed that SO2 emissions from the power plant affect the north of Mexico City in the cold-dry period. The evaluation of model estimates with 24 hr SO2 measured concentrations at Tepeji del Rio suggests that the combination of observations and dispersion models are useful in assessing the reduction of SO2 emissions due to shifting in fuels. Being SO2 a major precursor of acid rain, high transported sulfate concentrations are of concern and low pH values have been reported in the south of Mexico City, indicating that secondary SO2 products emitted in the power plant can be transported to Mexico City under specific atmospheric conditions.

Implications: Although the surroundings of a power plant located north of Mexico City receives most of the direct SO2 impact from fuel oil emissions, the plume is dispersed and advected to the Mexico City metropolitan area, where its secondary products may cause acid rain. The use of cleaner fuels may assure significant SO2 reductions in the plant emissions and consequent acid rain presence in nearby populated cities and should be compulsory in critical areas to comply with annual emission limits and health standards.  相似文献   

2.
We present measurements of several trace gases made at a subtropical coastal site in Hong Kong in October and November 1997. The gases include O3, CO, SO2, and NOx. The surface measurement data are compared with those from an aircraft study [Kok et al. J. Geophys. Res. 102 (D15) (1997) 19043–19057], and a subset of the latter is used to show the vertical distribution of the trace gases in the boundary layer. During the study period, averaged concentrations at the surface site for O3, CO, NOx, and SO2 were 50, 298, 2.75, and 1.65 ppbv, respectively. Their atmospheric abundance and diurnal pattern are similar to those found in the “polluted” rural areas in North America. The measured trace gases are fairly well mixed in the coastal boundary layer in the warm South China region. Large variability is indicated from the data. Examination of 10-day, isentropic back trajectories shows that the measured trace gases are influenced by maritime air masses, outflow of pollution-laden continental air, and the mixing of the two. The trajectories capture the contrasting chemical features of the large-scale air masses impacting on the study area. CO, NOx and SO2 all show higher concentrations in the strong outflow of continental air, as expected, than those in the marine category. Compared with previously reported values for the western Pacific, the much higher levels found in the marine trajectories in our study suggest the impacts of regional and/or sub-regional emissions on the measured trace gases at the study site. The presence of abundant O3 and other chemically active trace gases in the autumn season, coupled with high solar radiation and warm weather, suggests that the South China Sea is a photochemically active region important for studying the chemical transformation of pollutants emitted from the Asian continent.  相似文献   

3.
An electrochemical instrument of the type commonly used to monitor total oxidants was adapted to measure acid gases such as SO2, HCI, and HCO2H. By using chemical methods of treating the air sample prior to absorption, it is possible to monitor for specific oxidants and acids. Measurements of NO, NOx, and SO2 during smog-chamber experiments were found to be in good agreement with measurements made by other methods.  相似文献   

4.
The adsorption of NH3 and SO2 on the external leaf surface of bean (Phaseolus vulgaris L.) and poplar (Populus euramericana L.) was studied. The adsorbed quantities increased strongly with increasing air humidity, indicating that water on the leaf surface plays a major role in the interaction of these gases with the leaf surface. On the other hand temperature in the range between 15 and 26°C had no significant influence. The adsorbed quantities of NH3 at a specific air humidity appeared to be proportional to NH3 concentration. This proportionality was less clear for SO2. The affinity of SO2 for the leaf surface was found to be approximately twice that of NH3. A mixture of these gases in the air mutually stimulated their adsorption on the leaf. No significant desorption or uptake of these gases through the cuticle could be detected, indicating that the bulk of the adsorbed gases remains associated with the cuticle.  相似文献   

5.
Surface fluxes of O3, CO2 and SO2 were estimated from a variational method by using measured concentrations and variances of these trace gases. The measurements were taken over a deciduous forest when it was fully leafed during the summer of 1988 and when it was leafless during the winter of 1990. A flux–variance relation and a flux–gradient relation were employed as constraints in a cost function which is minimized to find the optimal estimate of concentration fluxes of the gases under study. Fluxes of O3, CO2 and SO2 from the variational method were compared with fluxes estimated by the flux–variance relation and measured using an eddy correlation technique. Results show that the variational method improves the estimates of fluxes.  相似文献   

6.
The Indo-Gangetic plain (IGP) has received extensive attention of the global scientific community due to higher levels of trace gases and aerosols over this region. Satellite retrievals and model simulations show that, in particular, the eastern part IGP is highly polluted. Despite this attention, in situ measurements of trace gases are very limited over this region. This paper presents measurements of SO2, CO, CH4, and C2–C5 NMHCs during March 2012–February 2013 over Kolkata, a megacity in the eastern IGP, with a focus on processes impacting their levels. The mean SO2 and C2H6 concentrations during winter and post-monsoon periods were eight and three times higher compared to pre-monsoon and monsoon. Early morning enhancements in SO2 and several NMHCs during winter connote boundary layer effects. Daytime elevations in SO2 during pre-monsoon and monsoon suggest impacts of photo-oxidation. Inter-species correlations and trajectory analysis evince transport of SO2 from regional combustion sources (e.g., coal burning in power plants, industries) along the east of the Indo-Gangetic plain impacting SO2 levels at the site. However, C2H2 to CO ratio over Kolkata, which are comparable to other urban regions in India, show impacts of local biofuel combustions. Further, high levels of C3H8 and C4H10 evince the dominance of LPG/petrochemicals over the study location. The suite of trace gases measured during this study helps to decipher between impacts of local emissions and influence of transport on their levels.  相似文献   

7.

Introduction  

The kinetics of the transformation of ammonia and acid gases into components of PM2.5 has been examined. The interactions of existing aerosols and meteorology with the transformation mechanism have also been investigated. The specific objective was to discern the kinetics for the gas-to-particle conversion processes where the reactions of NH3 with H2SO4, HNO3, and HCl take place to form (NH4)2SO4, NH4NO3, and NH4Cl, respectively, in PM2.5.  相似文献   

8.
This publication concerns the dry removal of SO2 from gases using limestone absorbents. It reports bench-scale experiments made with commercial samples of powdered limestone (CaCO3) activated by addition of a cheap substance, namely CaCl2. The absorption was carried out in a fluidized bed traversed by the flue gases, between 600° and 900° C. The degree and rate of transformation of CaCO3 to CaSO4 in the presence of SO2 and air have been compared for unmodified and modified absorbents. Initial rates of reaction, and the variation of the rate of absorption with time have been measured. The influence of the SO2 content of the gas has been assessed. At 700° C, the maximum degree of transformation of activated limestone to sulfate exceeds 90%, whereas untreated CaCO3 transforms only to 16–20%. At the same temperature, more than 90% of SO2 contained In a gas carrying 0.35% SO2 is removed. Because of the much smaller quantity of solid absorbent required, dry absorption processes based on the modified absorbents might get renewed interest. The modified absorbents might also be used for in situ absorption in fluidized bed combustion, in which the temperatures are in the range studied in the present paper.  相似文献   

9.
10.
ABSTRACT

The visual impact of primary particles emitted from stacks is regulated according to stack opacity criteria. In-stack monitoring of the flue gas opacity allows plant operators to ensure that the plant meets U.S. Environmental Protection Agency opacity regulations. However, the emission of condensable gases such as SO3 (that hydrolyzes to H2SO4), HCl, and NH3, which may lead to particle formation after their release from the stack, makes the prediction of stack plume opacity more difficult.

We present here a computer simulation model that calculates the opacity due to both primary particles emitted from the stack and secondary particles formed in the atmosphere after the release of condensable gases from the stack. A comprehensive treatment of the plume rise due to buoyancy and momentum is used to calculate the location at which the condensed water plume has evaporated (i.e., where opacity regulations apply).

Conversion of H2SO4 to particulate sulfate occurs through nucleation and condensation on primary particles. A thermodynamic aerosol equilibrium model is used to calculate the amount of ammonium, chloride, and water present in the particulate phase with the condensed sulfate. The model calculates the stack plume opacity due to both primary and secondary particles. Examples of model simulations are presented for three scenarios that differ by the emission control equipment installed at the power plant: (1) electrostatic precipitators (ESP), (2) ESP and flue gas desulfurization, and (3) ESP and selective catalytic reduction. The calculated opacity is most sensitive to the primary particulate emissions. For the conditions considered here, SO3 emissions showed only a small effect, except if one assumes that most H2SO4 condenses on primary particles. Condensation of NH4Cl occurs only at high NH3 emission rates (about 25 ppm stack concentration).  相似文献   

11.
Abstract

The removal of sulfur dioxide (SO2) from simulated flue gases streams (N2/O2/H2O/SO2) was experimentally investigated using microgap discharge. In the experiment, the thinner dielectric layers of aluminum oxide (Al2O3) were used to form the microgap discharge. With this physical method, a high concentration of hydroxyl (OH·) radicals were produced using the ionization of O2 and H2O to further the conversion of SO2 into sulfuric acid (H2SO4) at 120° C in the absence of any catalysts and absorbents, which were captured with the electrostatic precipitator (ESP). As a result, the increase of discharge power and concentrations of O2 and H2O increased the production of OH· radicals resulting in enhanced removal of SO2 from gas streams. With the test and analysis, a number of H2SO4 droplets were produced in experiment. Therefore, a new method for removal of SO2 in semidry method without ammonia (NH3) additive was found.  相似文献   

12.
ABSTRACT

This paper presents a technique for the complete, simultaneous decomposition of CO2, SO2, and NOx, as well as the simultaneous removal of fly ash by ultra-high voltage pulse activation. Ultra-high voltage narrow pulse is used to make the gases in the reactor become active molecules, which are then dissociated into nonpoisonous gas molecules and solid particles under the control of a directional reaction model. By using a sufficient charge and a strong electric field, the fly ash can be removed. It becomes the carrier of C and S, and its efficiency is 99.5%. Owing to the action of catalyst B (using Ni as the mother's body), the activation energy of CO2, SO2, and NOx gases is reduced in great magnitude, and their removal efficiency can reach 75~90% at normal pressure and 180 °C.  相似文献   

13.
The body of Information presented in this paper is directed to those Individuals concerned with the removal of NOx in combustion flue gases. A catalytic process for the selective reduction of nitrogen oxides by ammonia has been investigated. Efforts were made toward the development of catalysts resistant to SOx poisoning. Nitrogen oxides were reduced over various metal oxide catalysts in the presence or absence of SOx(SO2 and SO3). Catalysts consisting of oxides of base metals (for example, Fe2O3) were easily poisoned by SO3, forming sulfates of the base metals. A series of catalysts which are not susceptible to the SOx poisoning has been developed. The catalysts possess a high activity and selectivity over a wide range of temperatures, 250—450°C. The catalysts were tested in a pilot plant which treated a flue gas containing 110-150 ppm NOx, 660-750 ppm SO2, and 40-90 ppm SO3. The pilot plant was operated at 350°C and at a space velocity of 10,000 h-1. The removal of nitrogen oxides was more than 90% for several months.

A mechanism of the NO-NH3 reaction has also been investigated. It is found that NO reacts with NH3 at a 1:1 mole ratio in the presence of oxygen and the reaction is completely inhibited by the absence of oxygen. The experimental data show that the NO-NH3 reaction in the presence of oxygen is represented byNO + NH3 + 1/4 O2 = N2 + 3/2 H2O.  相似文献   

14.
The influence of exposure to mixtures of SO2 and HF on Koethen sweet orange and mixtures and alternate exposure to these gases on Satsuma mandarin were tested using a rotating fumigation greenhouse. Effects of HF-SO2 mixtures on linear growth and leaf area of Koethen orange were additive, not synergistic. No necrosis was observed on Koethen oranges exposed to HF, SO2, or a mixture of HF and SO2. Effects of the mixture on chlorosis of Satsuma mandarin foliage was also not synergistic. No significant difference in linear growth of Satsuma mandarin was found among all treatments. Alternate exposure to SO2 followed by HF produced no synergistic injury to Satsuma mandarin. Satsuma mandarin appeared more sensitive than Koethen orange to HF, SO2, and mixtures of these two gases using degree of chlorosis and leaf abscission as the criteria of sensitivity. If iinear growth and leaf area were the principal criteria considered, Koethen orange would appear more sensitive.  相似文献   

15.
An automatic process gas chromatograph has been developed for use on the recovery furnace stack of a Kraft pulp mill. The instrument analyzes for widely varying concentrations of H2S, SO2, CH3SH and higher order sulfur compounds. It is insensitive to the fixed gases and water vapor, and performs its analysis in approximately ten minutes. The instrument features a microcoulometric detector giving it sensitivity to H2S as low as 0.1 ppm, and SO2 and CH3SH as low as 0.5 ppm. The major limit to even higher sensitivity at this stage of development lies with two problems: the background noise level in the detector and the sulfur compound absorption in the Porapak Q chromatograph column. At the reported sensitivity, a 40-ml gas sample was used. The instrument also contains a data analysis system supplementary to the usual strip chart recorder. This system is made up of a digital voltmeter, a digital translator, and a teletype and hence allows the transfer of the output data to a digital computer for processing. The processed data are usually presented in the form of ppm quantities of the component gases in the stack gas. The instrument has worked successfully on small furnace effluent for periods of 25 hr but has not been tried on recovery furnace stacks. It has also run on prepared samples for periods of up to seven days with no maintenance or attendance necessary.  相似文献   

16.
Sodium hypochlorite (NaClO) has been widely used as a chemical additive for enhancing nitrogen oxide (NOx; NO + NO2), sulfur dioxide (SO2), and mercury (Hg0) removals in a wet scrubber. However, they are each uniquely dependent on NaClO(aq) pH, hence making the simultaneous control difficult. In order to overcome this weakness, we sprayed low liquid-to-gas (L/G) ratio (0.1 L/Nm3) of NaClO(aq) to vaporize quickly at 165 °C. Results have shown that the maximized NOx, SO2, and Hg0 removals can be achieved at the pH range between 4.0 and 6.0. When NOx and Hg0 coexist with SO2, in addition, their removals are significantly enhanced by reactions with solid and gaseous by-products such as NaClO(s), NaClO2(s), OClO, ClO, and Cl species, originated from the reaction between SO2 and NaClO(aq). We have also demonstrated the feasibility of this approach in the real flue gases of a combustion plant and observed 50%, 80%, and 60% of NOx, SO2, and Hg0 removals, respectively. These findings led us to conclude that the spray of NaClO(aq) at a relatively high temperature at which the sprayed solution can vaporize quickly makes the simultaneous control of NOx, SO2, and Hg0 possible.

Implications: The simple spray of NaClO(aq) at temperatures above 165 °C can cause the simultaneous removal of gaseous NOx, SO2, and Hg0 by its quick vaporization. Their maximized removals are achieved at the pH range between 4.0 and 6.0. NOx and Hg0 removals are also enhanced by gaseous and solid intermediate products generated from the reaction of SO2 with NaClO(aq). The feasibility of this approach has been demonstrated in the real flue gases of a combustion plant.  相似文献   


17.
Abstract

Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.  相似文献   

18.
The body of information presented in this paper is directed to photochemists and air pollution scientists interested in species which result from the interaction of SO2 and light. When SO2 at low pressures is subjected to an intense photolysis flash, the characteristic, very structured SO2absorption spectrum disappears immediately after the flash and is replaced by a continuous absorption. The continuous absorption gradually decays and the normal SO2 absorption spectrum returns. The initial absorbance of the continuous absorption is proportional to the square of the SO2 pressure and the square of the flash irradiance. From these facts we propose the formation of a metastable dimer of SO2 formed by the collision of two excited molecules. Some properties of this dimer are: natural lifetime = 2 sec; energy above separated monomers = 4 kcal; lifetime at atmospheric pressure = 1 sec (quenching coefficients with several foreign gases = 10-20 cm3/sec molecule); absorption of ultraviolet light results in photode-composition of the dimer into monomeric SO2. The long lifetime of this species and its low quenching cross section may make it an important intermediate in photochemical reactions of SO2. The relatively low excitation energy of the metastable species indicates it may also be an intermediate in thermally excited reactions and perhaps an important component of smoke stack effluent.  相似文献   

19.
Soils have long been recognised as sulfur dioxide (SO2) sinks, but we show that they can also be sources of atmospheric SO2. Using static chambers and micrometeorological techniques, we have measured emissions of SO2 from coastal lowland soils containing sulfides (mostly pyrite), commonly referred to as acid sulfate soils in Australia. SO2 evolution seems coupled to evaporation of soil water containing sulfite. The global emissions of S from acid sulfate soils is estimated at about 3 Tg/year, which is of the same order as emissions from terrestrial biogenic sources and biomass burning and is about 3% of known anthropogenic emissions of S.  相似文献   

20.
In this presentation, adaptation of the lime/limestone process for flue gas desulfurization (FGD) is discussed and how this process can be adapted to applications in the nonferrous smelting industry such as fugitive gases, copper reverberatory furnace gases, lead sintering gases, molybdenum roasting plant tail gases, and other weak SO2 smelter gases. Different methods for particulate removal are also discussed with emphasis on how the particulate removal process can be integrated with the desulfurization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号