首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h−1 for atrazine and 0.039 h−1 for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters.  相似文献   

2.
Fate of chlorophenoxyacetic acids in acid soil   总被引:1,自引:0,他引:1  
The relative persistence of MCPA, 2,4-D and 2,4,5-T in an acid soil was assessed under laboratory conditions with field capacity and flooded level of soil moisture. The experimental soil was incubated for 96 weeks and samples were collected at a specific interval for the determination of the residues by the gas chromatography. The decomposition was faster with MCPA than those of 2,4-D and 2,4,5-T. Soil moisture affected the degradation rate sharply.  相似文献   

3.
Method development and validation studies have been completed on an assay that will allow the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in human urine. The accurate determination of 2,4-D in urine is an important factor in monitoring worker and population exposure. These studies successfully validated a method for the detection of 2,4-D in urine at a limit of quantitation (LOQ) of 5.00 ppb (parts per billion) using gas chromatography with mass selective detection (GC/MSD). The first study involved the determination of 2,4-D in control human urine and urine samples fortified with 2,4-D. Due to chromatographic interference, a second study was conducted using 14C-2,4-D to verify the recoverability of 2,4-D from human urine at low levels using the GC/MSD method. The second study supports the results of the original data. The 2,4-D was extracted from human urine using a procedure involving hydrolysis using potassium hydroxide, followed by a liquid-liquid extraction into methylene chloride. The extracted samples were derivatized with diazomethane. The methylated fraction was analyzed by GC/MSD. Quantitation was made by comparison to methylated reference standards of 2,4-D. Aliquots fortified at 5-, 50-, and 500-ppb levels were analyzed. The overall mean recovery for all fortified samples was 90.3% with a relative standard deviation of 14.31%.  相似文献   

4.
R Deml  K Dettner 《Chemosphere》2001,45(6-7):783-789
A herbicide containing 2,4-dichlorophenoxyacetic acid (2,4-D) and related chemicals was fed to caterpillars of Eupackardia calleta, and the fate of the substances in the larvae and during further ontogenesis was followed by combined gas chromatography/mass spectrometry. The compounds were found in differing amounts in larval midgut, faeces, fat body/haemolymph, and even in an exocrine secretion produced by integumental glands. Furthermore, they were detected in samples from the resulting adult moths, indicating an intraindividual transfer. Since the individual development of E. calleta was distinctly accelerated by 2,4-D, possible impacts of the herbicide on the life history of the animals in the field are discussed. Based on the chemical data, hypothetical metabolic pathways for 2,4-D in E calleta larvae are proposed.  相似文献   

5.
Atmospheric samples have been collected between 14 March and 12 September 2012 on a 2-week basis (15 days of sampling and exchange of traps each 7 days) in Strasbourg (east of France) for the analysis of 43 pesticides. Samples (particle and gas phases) were separately extracted using Accelerated Solvent Extraction (ASE) and pre-concentrated by Solid Phase Micro-Extraction (SPME) before analysis by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Four SPME consecutive injections at distinct temperatures were made in order to increase the sensitivity of detection for the all monitored pesticides. Currently used detected pesticides can be grouped in four classes; those used in maize crops (acetochlor, benoxacor, dicamba, s-metolachlor, pendimethalin, and bromoxynil), in cereal crops (benoxacor, chlorothalonil, fenpropimorph, and propiconazole), in vineyards (tebuconazole), and as herbicides for orchards, meadows of green spaces (2,4-MCPA, trichlopyr). This is in accordance with the diversity of crops found in the Alsace region and trends observed are in accordance with the period of application of these pesticides. Variations observed permit also to demonstrate that the long time sampling duration used in this study is efficient to visualize temporal variations of airborne pesticides concentrations. Then, long time high-volume sampling could be a simple method permitting atmospheric survey of atmospheric contamination without any long analysis time and consequently low cost.  相似文献   

6.
2,4-D levels in the South Saskatchewan River near Saskatoon in 1973 at the height of the spraying season, and at harvestime, were determined by a method involving direct glc analysis, ankaline hydrolysis, followed by n-butylation of the liberated free acid after acidification of the alkaline solution, and confirmed by subsequent n-octylation. GC/MS also confirmed the presence of 2,4-D. 2,4-D was detected during the spraying season but not at harvest time or in river mud samples. The average level was ca. 2mug of acid equivalent to 2,4-D per liter of river water at the height of the spraying season.  相似文献   

7.
This paper presents a survey of pesticide residues in tanks following application and throughout the cleanout procedure as conducted by 46 volunteer operators across Colorado. While many pesticides were detected, this paper focuses on dicamba and 2,4-D, which were detected by liquid chromatography/tandem mass spectroscopy (LC-MS/MS). An exponential decrease in concentration was observed with sequential rinses, although this decrease may be more rapid for more water-soluble pesticides. More than 95% of the pesticide in the prerinse solution was removed by the end of the third rinse in all but three operator samples. Concentrations after three rinses were 0.41 ± 0.25 and 3.3 ± 1.1 mg/L for dicamba and 2,4-D, respectively. These concentrations suggest that the recommended practice of three rinses may not be adequate to eliminate off-target effects or point sources of pesticide waste, and that the recommended standard of personal protective equipment is essential to prevent worker exposure to the chemicals.

Implications:?This paper demonstrates that the waste generated during cleanout of pesticide application devices constitutes a potential source of pollution and worker exposure. In particular, while the first rinse of pesticide containers is often treated as hazardous waste and reapplied to crops, the remaining rinses are not. This work demonstrates that the wastewater generated in subsequent rinses can have high enough concentrations to impact worker health, cause off-target effects on crops, and potentially constitute a point source of pesticides. The practical implication is for improved recommendations and regulations regarding pesticide applicators and their cleanout process.  相似文献   

8.
Merini LJ  Cuadrado V  Giulietti AM 《Chemosphere》2008,71(11):2168-2172
The 2,4-dichlorophenoxyacetic acid (2,4-D) is a hormone-like herbicide widely used in agriculture. Although its half life in soil is approximately two weeks, the thousands of tons introduced in the environment every year represent a risk for human health and the environment. Considering the toxic properties of this compound and its degradation products, it is important to assess and monitor the 2,4-D residues in agricultural soils. Furthermore, experiments of phyto/bioremediation are carried out to find economic and environmental friendly tools to restore the polluted soils. Accordingly, it is essential to accurately measure the amount of 2,4-D and its metabolites in soils. There is evidence that 2,4-D extraction from soil samples seriously depends on the physical and chemical properties of the soil, especially in those soils with high content of humic acids. The aim of this work was to assess the variables that influence the recovery and subsequent analysis of 2,4-D and its main metabolite (2,4-dichlorophenol) from those soils samples. The results showed that the recovery efficiency depends on the solvent and method used for the extraction, the amount and kind of solvent used for dissolving the herbicide and the soil water content at the moment of spiking. An optimized protocol for the extraction and quantification of 2,4-D and its main metabolite from soil samples is presented.  相似文献   

9.
Total body dose received in home gardeners applying 2,4-D and bystanders living within the household, but not applying the pesticide was measured. Levels of 2,4-D were monitored in air samples both inside the home and downwind of the application site. Homeowners were divided into protective and non-protective apparel groups and applied both a granular and liquid formulation of 2,4-D on two separate dates. Analyses of urine collected from homeowners for 96 hours following applications found total body doses ranging from non-detectable to 0.0071 mg/kg of body weight. The highest exposures occurred in the non-protected group and were consistently associated with spills of the liquid concentrate or excessive contact with the dilute mixture on the hands or forearms. Residues of 2,4-D were not detected in urine samples supplied by bystanders to home applicators. Residues of 2,4-D were detected in five of the 76 air samples taken during the home applications. Two of these air samples coincided with measurable applicator exposure but it is unlikely that this was a major route of exposure.  相似文献   

10.
Ground and river water from Bulgarian Danube plain, an intensive agricultural area, was monitored for pesticide contamination. Seventeen pesticides belonging to 5 chemical groups were selected for analysis according to a farm use survey. The study has been carried out for two years. Analysis were carried out by capillary gas chromatography (GC) using a dual detection system (ECD and NPD), as well as by high performance liquid chromatography (HPLC) with UV detection. Atrazine was the compound found most often in ground water. The other active ingredients detected in ground and river water were mainly herbicides (alachlor, 2,4-D, metolachlor). The organochlorine insecticides, lindane and endosulfan, were detected at extremely low concentrations. The contamination of atrazine was associated mostly with continuous corn production.  相似文献   

11.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

12.
Abstract

In the present work, dispersive micro-solid phase extraction (D-μ-SPE) method using magnetic graphene oxide tert-butylamine (GO/Fe3O4/TBA) nanocomposite, as an efficient sorbent, was applied for determining 2,4-dichlorophenoxyacetic acid (2,4-D) in water and food samples. Detection was carried out using high-performance liquid chromatography (HPLC) instrument. Influential parameters of D-μ-SPE such as sorbent and its amount, elution solvent and its volume, adsorption and desorption times and pH of sample solution were investigated and optimized. Under the optimized conditions, limit of detection and quantitation values were 0.007 and 0.02?μg/mL, respectively. Recovery data for several real samples were obtained within the range of 88.0–94.0% with a relative standard deviation (RSD) less than 7.5%. The proposed method was successfully applied to quantitative determination of 2,4-D in several vegetables and water samples.  相似文献   

13.
Batch adsorption and desorption experiments were performed using thirteen agricultural soil samples and five pesticides. Experimental data indicated a gradient in pesticide adsorption on soil: trifluralin > 2,4-D > isoproturon> atrazine > bentazone. Atrazine, isoproturon and trifluralin adsorption were correlated to soil organic matter content (r2 = 0.7, 0.82, 0.79 respectively). Conversely, bentazone adsorption was governed by soil pH (r2 = 0.68) while insignificant effect has been shown in the case of 2,4-D. Multiple linear regressions were used to combine relationships between the various soil parameters and the Freundlich adsorption coefficient (K(f)) of each pesticide. Then desorption was assessed since it may reflect some of the interactions involved between the pesticides and the soil components. Adsorbed molecules were released into aqueous solution in the following order: bentazone > atrazine> isoproturon> 2,4-D > trifluralin. The occurrence of hysteresis did not allow an accurate interpretation of the pesticide desorption data because of the possible interplay of several processes.  相似文献   

14.
Abstract

Residues of 2,4‐D (2,4‐dichlorophenoxyacetic acid) in air samples from several sampling sites in central and southern Saskatchewan during the spraying seasons in the 1966–68 and 1970–75 periods were determined by gas‐liquid Chromatographic techniques. Initially, individual esters of 2,4‐D were characterized by retention times and confirmed further by co‐injection and dual column procedures. Since 1973, however, only total 2,4‐D acid levels in air samples have been determined after esterification to the methyl ester and confirmed by gc/ms techniques whenever possible.

Up to 50% of the daily samples collected during the spraying season at any of the locations and during any given year contained 2,4‐D, with butyl esters being found most frequently. The daily 24‐hr mean atmospheric concentrations of 2,4‐D ranged from 0.01 to 1.22 μg/m3, 0.01 to 13.50 μg/m3, and 0.05 to 0.59 μg/m for the iso‐propyl, mixed butyl and iso‐octyl esters, respectively. Even when the samples were analysed for the total 2,4‐D content, i.e. from 1973 onwards, the maximum level of the total acid reached only 23.14 μg/m. In any given year and at any of the sampling sites, about 30% of the samples contained less than 0.01 μg/m3 of 2,4‐D. In another 40% of the samples, the levels of 2,4‐D ranged from 0.01 to 0.099 yg/m. Only about 30% of the samples contained 2,4‐D concentrations higher than 0.1 μg/m3, with only 10% or less exceeding 1 μg/m3.

None of the samples, obtained with the high volume particu‐late sampler, showed any detectable levels of 2,4‐D, indicating little or no transport of 2,4‐D adsorbed on dust particles or as crystals of amine salts.  相似文献   

15.
空气中挥发性有机物监测技术的研究进展   总被引:13,自引:0,他引:13  
讨论了空气中挥发性有机化合物(VOCs)的监测分析方法研究进展。重点介绍了空气中VOCs的采集、分析和测定;简要叙述了样品前处理的新方法--固相微萃取法(SPME)与其它前处理方法的研究概况。  相似文献   

16.
The work highlights the utilization of an agricultural waste mustard plant ash (MPA) as a soil additive and an adsorbent. MPA was characterized by X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX), proximate analysis, CHNS analysis, Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential measurements, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRF analysis confirmed the presence of CaO (31.35 %), K2O (18.55 %), and P2O5 (6.99 %), all of which act as micronutrients to plants. EDX also confirms high amount of elemental O, Ca, K, and P. The adsorptive ability of MPA was investigated using a commonly used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), as a representative chemical. Batch adsorption experiments were conducted to study the effect of different operational parameters such as adsorbent dose, initial 2,4-D concentration, contact time, and temperature on the adsorption process. Data from experiments were fitted to various kinetic and isothermal models. The pseudo-second-order kinetic model was found to show the best fit (R 2?>?0.99), with the highest k 2 value of the order 105. Based on the study results, dosage of MPA/hectare for different crops has been recommended for effective removal of 2,4-D. To our knowledge, this is the first study in which MPA has been characterized in detail and investigated for dual applications (as an adsorbent and as a soil additive).  相似文献   

17.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

18.
Analytical procedures for the simultaneous determination of residues of 2,4-D and dicamba from polyurethane foam plug air samplers, ethylene glycol impregnated glass-fiber filter paper dermal samplers, 1% sodium bicarbonate hand wash solution, and urine are presented. Residues were derivatized with diazomethane and quantitated using electron capture gas chromatography. Recoveries were greater than 80% at the limit of detection in all substrates. The limits of detection for both herbicides were 0.1 microgram/foam plug and 0.5 micrograms/filter paper, and in the urine, 1.7 micrograms/100 mL and 5.0 micrograms/100 mL for dicamba and 2,4-D, respectively.  相似文献   

19.
Cessna AJ  Waite DT  Kerr LA  Grover R 《Chemosphere》2000,40(8):795-802
The reproducibility of collection of atmospheric residues of the herbicides 2,4-D and triallate as bulk (wet plus dry) deposition samples by paired pan samplers and as particulate (filter) and vapour (PUF/XAD-2 resin cartridge) samples by paired high-volume air samplers was determined. Variability of herbicide concentrations in paired bulk deposition samples was within 25% for 65 and 80% of the samples for 2,4-D and triallate, respectively, with approximately 90% of the paired samples being within a factor of 2 for both herbicides. The vapour samples of 2,4-D and triallate showed similar reproducibilities. The highest reproducibility was observed for the filter samples with 92% of the paired data sets for 2,4-D being within 25% variability. No triallate was detected in the filter samples.  相似文献   

20.
Residues of five pesticides in surface water were surveyed during 2001 and 2003 in the Traiguen river basin in Southern Chile. Simazine, hexazinone, 2,4-D, picloram herbicides and carbendazim fungicide were selected through a pesticide risk classification index. Six sampling stations along the river were set up based on agricultural and forestry land use. The water sampling was carried out before and after the pesticide application periods and in correspondence to some rain events. Pesticides were analyzed by HPLC with DAD detection in a multiresidue analysis. During 2001, in the first sampling campaign (March), the highest concentrations of pesticides were 3.0 microg l(-1) for simazine and hexazinone and 1.8 microg l(-1) for carbendazim. In the second sampling (September), the highest concentration were 9.7 microg l(-1) for 2,4-D, 0.3 microg l(-1) for picloram and 0.4 microg l(-1) for carbendazim. In the last sampling period (December), samples indicated contamination with carbendazim fungicide at levels of up to 1.2 microg l(-1). In sampling carried out on May 2003, no pesticides were detected. In October 2003, the highest concentrations of pesticides were 4.5 microg l(-1) for carbendazim and 2.9 microg l(-1) for 2,4-D. Data are discussed in function of land use and application periods of the products, showing a clear seasonal pattern pollution in the Traiguen river. Risk assessment for these pesticides was calculated by using a risk quotient (RQ = PNEC/PEC). For picloram the calculated RQ < was 0, which indicates that no adverse effects may occur due to the exposure to this herbicide in the Traiguen river basin. For 2,4-D, simazine, hexazinone, carbendazim RQ > 1, meaning that adverse effects could occur and it is necessary to reduce pesticide exposure in surface waters. It is recommended to continue with a pesticide monitoring program and the implementation of ecotoxicological testing with local and standardized species in order to consider the probability of effects occurrence, with less uncertainty. Thus, it will be more feasible to make some recommendations to regulatory agencies regarding the pesticide use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号