首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study quantifies the trade-offs and synergies between climate and air quality policy objectives for the European power and heat (P&H) sector. An overview is presented of the expected performance data of CO2 capture systems implemented at P&H plants, and the expected emission of key air pollutants, being: SO2, NOX, NH3, volatile organic compounds (VOCs) and particulate matter (PM). The CO2 capture systems investigated include: post-combustion, oxyfuel combustion and pre-combustion capture.For all capture systems it was found that SO2, NOx and PM emissions are expected to be reduced or remain equal per unit of primary energy input compared to power plants without CO2 capture. Increase in primary energy input as a result of the energy penalty for CO2 capture may for some technologies and substances result in a net increase of emissions per kWh output. The emission of ammonia may increase by a factor of up to 45 per unit of primary energy input for post-combustion technologies. No data are available about the emission of VOCs from CO2 capture technologies.A simple model was developed and applied to analyse the impact of CO2 capture in the European P&H sector on the emission level of key air pollutants in 2030. Four scenarios were developed: one without CO2 capture and three with one dominantly implemented CO2 capture system, varying between: post-combustion, oxyfuel combustion and pre-combustion.The results showed a reduction in GHG emissions for the scenarios with CO2 capture compared to the baseline scenario between 12% and 20% in the EU 27 region in 2030. NOx emissions were 15% higher in the P&H sector in a scenario with predominantly post-combustion and lower when oxyfuel combustion (?16%) or pre-combustion (?20%) were implemented on a large scale. Large scale implementation of the post-combustion technology in 2030 may also result in significantly higher, i.e. increase by a factor of 28, NH3 emissions compared to scenarios with other CO2 capture options or without capture. SO2 emissions were very low for all scenarios that include large scale implementation of CO2 capture in 2030, i.e. a reduction varying between 27% and 41%. Particulate Matter emissions were found to be lower in the scenarios with CO2 capture. The scenario with implementation of the oxyfuel technology showed the lowest PM emissions followed by the scenario with a significant share allocated to pre-combustion, respectively ?59% and ?31%. The scenario with post-combustion capture resulted in PM emissions varying between 35% reduction and 26% increase.  相似文献   

2.
The on-road transportation (ORT) and power generation (PG) sectors are major contributors to carbon dioxide (CO2) emissions and a host of short-lived radiatively-active air pollutants, including tropospheric ozone and fine aerosol particles, that exert complex influences on global climate. Effective mitigation of global climate change necessitates action in these sectors for which technology change options exist or are being developed. Most assessments of possible energy change options to date have neglected non-CO2 air pollutant impacts on radiative forcing (RF). In a multi-pollutant approach, we apply a global atmospheric composition-climate model to quantify the total RF from the global and United States (U.S.) ORT and PG sectors. We assess the RF for 2 time horizons: 20- and 100-year that are relevant for understanding near-term and longer-term impacts of climate change, respectively. ORT is a key target sector to mitigate global climate change because the net non-CO2 RF is positive and acts to enhance considerably the CO2 warming impacts. We perform further sensitivity studies to assess the RF impacts of a potential major technology shift that would reduce ORT emissions by 50% with the replacement energy supplied either by a clean zero-emissions source (S1) or by the PG sector, which results in an estimated 20% penalty increase in emissions from this sector (S2). We examine cases where the technology shift is applied globally and in the U.S. only. The resultant RF relative to the present day control is negative (cooling) in all cases for both S1 and S2 scenarios, global and U.S. emissions, and 20- and 100-year time horizons. The net non-CO2 RF is always important relative to the CO2 RF and outweighs the CO2 RF response in the S2 scenario for both time horizons. Assessment of the full impacts of technology and policy strategies designed to mitigate global climate change must consider the climate effects of ozone and fine aerosol particles.  相似文献   

3.
The reduction of CO2 emissions and fuel consumption from road transportation constitutes an important pillar of the EU commitment for implementing the Kyoto Protocol. Efforts to monitor and limit CO2 emissions from vehicles can effectively be supported by the use of vehicle modelling tools. This paper presents the application of such a tool for predicting CO2 emissions of vehicles under different operating conditions and shows how the results from simulations can be used for supporting policy analysis and design aiming at further reductions of the CO2 emissions. For this purpose, the case of light duty goods (N1 category) vehicle CO2 emissions control measures adopted by the EU is analysed. In order to understand how certain design and operating aspects affect fuel consumption, a number of N1 vehicles were simulated with ADVISOR for various operating conditions and the numerical results were validated against chassis dynamometer tests. The model was then employed for analysing and evaluating the new EU legislative framework that addresses CO2 emissions from this vehicle class. The results of this analysis have shown the weaknesses of the current regulations and revealed new potential in CO2 emissions control. Finally the TREMOVE model was used for simulating a possible scenario for reducing CO2 emissions at fleet level.  相似文献   

4.

China and India are the largest coal consumers and the most populated countries in the world. With industrial and population growth, the need for energy has increased, which has inevitably led to an increase in carbon dioxide (CO2) emissions because both countries depend on fossil fuel consumption. This paper investigates the impact of energy consumption, financial development (FD), gross domestic product (GDP), population, and renewable energy on CO2 emissions. The study applies the long short-term memory (LSTM) method, a novel machine learning (ML) approach, to examine which influencing driver has the greatest and smallest impact on CO2 emissions; correspondingly, this study builds a model for CO2 emission reduction. Data collected between 1990 and 2014 were analyzed, and the results indicated that energy consumption had the greatest effect and renewable energy had the smallest impact on CO2 emissions in both countries. Subsequently, we increased the renewable energy coefficient by one and decreased the energy consumption coefficient by one while keeping all other factors constant, and the results predicted with the LSTM model confirmed the significant reduction in CO2 emissions. Finally, this study forecasted a CO2 emission trend, with a slowdown predicted in China by 2022; however, CO2 emission’s reduction is not possible in India until 2023. These results suggest that shifting from nonrenewable to renewable sources and lowering coal consumption can reduce CO2 emissions without harming economic development.

  相似文献   

5.
Lately, the technical research on carbon dioxide capture and utilization (CCU) has achieved important breakthroughs. While single CO2-based innovations are entering the markets, the possible economic effects of a large-scale CO2 utilization still remain unclear to policy makers and the public. Hence, this paper reviews the literature on CCU and provides insights on the motivations and potential of making use of recovered CO2 emissions as a commodity in the industrial production of materials and fuels. By analyzing data on current global CO2 supply from industrial sources, best practice benchmark capture costs and the demand potential of CO2 utilization and storage scenarios with comparative statics, conclusions can be drawn on the role of different CO2 sources. For near-term scenarios the demand for the commodity CO2 can be covered from industrial processes, that emit CO2 at a high purity and low benchmark capture cost of approximately 33 €/t. In the long-term, with synthetic fuel production and large-scale CO2 utilization, CO2 is likely to be available from a variety of processes at benchmark costs of approx. 65 €/t. Even if fossil-fired power generation is phased out, the CO2 emissions of current industrial processes would suffice for ambitious CCU demand scenarios. At current economic conditions, the business case for CO2 utilization is technology specific and depends on whether efficiency gains or substitution of volatile priced raw materials can be achieved. Overall, it is argued that CCU should be advanced complementary to mitigation technologies and can unfold its potential in creating local circular economy solutions.  相似文献   

6.
Stephen F. Lincoln 《Ambio》2012,41(8):841-850
Climate change is occurring largely as a result of increasing CO2 emissions whose reduction requires greater efficiency in energy production and use and diversification of energy sources away from fossil fuels. These issues were central to the United Nation climate change discussions in Durban in December 2011 where it was agreed that a legally binding agreement to decrease greenhouse gas emissions should be reached by 2015. In the interim, nations were left with the agreement reached at the analogous 2009 Copenhagen and 2010 Cancun meetings that atmospheric CO2 levels should be constrained to limit the global temperature rise to 2 °C. However, the route to this objective was largely left to individual nations to decide. It is within this context that options for reduction in the 95 % fossil fuel dependency and high CO2 emissivity of the Australian energy profile using current technologies are considered. It is shown that electricity generation in particular presents significant options for changing to a less fossil fuel dependent and CO2 emissive energy profile.  相似文献   

7.
The environment and its interactions with human systems, whether economic, social, or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of “deep uncertainty” presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be “technological development” and “change in societal paradigms.” These drivers were used as a basis to develop four distinct scenario storylines. The energy and emissions implications of each storyline were then modeled using the MARKAL energy system model. NOx emissions were found to decrease for all scenarios, largely a response to existing air quality regulations, whereas SO2 emissions ranged from 12% greater to 7% lower than 2015 emissions levels. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition to cleaner fuels and energy demand reductions.

Implications: Application of scenarios in air quality management provides a structured means of sifting through and understanding the dynamics of the many complex driving forces affecting future air quality. Further, scenarios provide a means to identify opportunities and challenges for future air quality management, as well as a platform for testing the efficacy and robustness of particular management options across wide-ranging conditions.  相似文献   

8.
Carbon dioxide emissions have accelerated since the signing of the Kyoto Protocol. This discouraging development may partly be blamed on accelerating world growth and on lags in policy instruments. However, it also raises serious question concerning whether policies to reduce CO2 emissions are as effective as generally assumed. In recent years, a considerable number of studies have identified various feedback mechanisms of climate policies that often erode, and occasionally reinforce, their effectiveness. These studies generally focus on a few feedback mechanisms at a time, without capturing the entire effect. Partial accounting of policy feedbacks is common in many climate scenarios. The IPCC, for example, only accounts for direct leakage and rebound effects. This article attempts to map the aggregate effects of different types of climate policy feedback mechanisms in a cohesive framework. Controlling feedback effects is essential if the policy measures are to make any difference on a global level. A general conclusion is that aggregate policy feedback mechanisms tend to make current climate policies much less effective than is generally assumed. In fact, various policy measures involve a definite risk of ‘backfiring’ and actually increasing CO2 emissions. This risk is particularly pronounced once effects of climate policies on the pace of innovation in climate technology are considered. To stand any chance of controlling carbon emissions, it is imperative that feedback mechanisms are integrated into emission scenarios, targets for emission reduction and implementation of climate policy. In many cases, this will reduce the scope for subsidies to renewable energy sources, but increase the scope for other measures such as schemes to return carbon dioxide to the ground and to mitigate emissions of greenhouse gases from wetlands and oceans. A framework that incorporates policy feedback effects necessitates rethinking the design of the national and regional emission targets. This leads us to a new way of formulating emission targets that include feedback effects, the global impact target. Once the full climate policy feedback mechanisms are accounted for, there are probably only three main routes in climate policy that stand a chance of mitigating global warming: (a) returning carbon to the ground, (b) technological leaps in zero-emission energy technology that make it profitable to leave much carbon in the ground even in Annex II countries and (c) international agreements that make it more profitable to leave carbon in the ground or in forests.  相似文献   

9.
10.
Abstract

Worldwide concerns about sulfur oxide (SOx) emissions from ships are motivating the replacement of marine residual oil (RO) with cleaner, lower-sulfur fuels, such as marine gas oil (MGO) and marine diesel oil (MDO). Vessel operators can use MGO and MDO directly or blended with RO to achieve environmental and economic objectives. Although expected to be much cleaner in terms of criteria pollutants, these fuels require additional energy in the upstream stages of the fuel cycle (i.e., fuel processing and refining), and thus raise questions about the net impacts on greenhouse gas emissions (primarily carbon dioxide [CO2]) because of production and use. This paper applies the Total Energy and Environmental Analysis for Marine Systems (TEAMS) model to conduct a total fuel cycle analysis of RO, MGO, MDO, and associated blends for a typical container ship. MGO and MDO blends achieve significant (70–85%) SOx emissions reductions compared with RO across a range of fuel quality and refining efficiency assumptions. We estimate CO2 increases of less than 1% using best estimates of fuel quality and refinery efficiency parameters and demonstrate how these results vary based on parameter assumptions. Our analysis suggests that product refining efficiency influences the CO2 tradeoff more than differences in the physical and energy parameters of the alternative fuels, suggesting that modest increases in CO2 could be offset by efficiency improvements at some refineries. Our results help resolve conflicting estimates of greenhouse gas tradeoffs associated with fuel switching and other emissions control policies.  相似文献   

11.
The number of gas turbine- (GT-) based power plants is rapidly increasing to meet the world’s power demands. Until a few years ago, fossil fuel, and specifically fuel oil, was considered the major energy source for gas turbine operation. Due to the high amount of pollution that fuel oil generates, natural gas has become a popular source of energy due to its lower emissions compared to fuel oil. As a result, many GTs have switched to natural gas as an alternative to fuel oil. However, pollutants expelled from GT-based power plants operating on natural gas impact surrounding air quality. The objective of this study was to examine the dispersion of nitrogen oxides (NOx) emitted from a GT-based power plant located in the Sultanate of Oman. Supported by CALPUFF dispersion modeling software, six scenarios were investigated in this study. The first four scenarios considered a case where the GT-based power plant was operating on natural gas during winter and summer and for open and combined cycle modes. The remaining two scenarios considered, for both open and combined cycle modes, the case where the GT-based power plant was operating on fuel oil. Whether run by natural gas or fuel oil, CALPUFF simulation results for both seasons showed that NOx concentrations were higher when GTs were used in the combined cycle mode. The concentrations were still lower than the allowable concentrations set by the United States Environmental Protection Agency (U.S. EPA) standards. In contrast, for the case where the power plant operated on fuel oil, the NOx one-hour average simulated results exceeded the allowable limits only when the combined cycle mode was activated.  相似文献   

12.
Energy supply utilities release significant amounts of greenhouse gases (GHGs) into the atmosphere. It is essential to accurately estimate GHG emissions with their uncertainties, for reducing GHG emissions and mitigating climate change. GHG emissions can be calculated by an activity-based method (i.e., fuel consumption) and continuous emission measurement (CEM). In this study, GHG emissions such as CO2, CH4, and N2O are estimated for a heat generation utility, which uses bituminous coal as fuel, by applying both the activity-based method and CEM. CO2 emissions by the activity-based method are 12–19% less than that by the CEM, while N2O and CH4 emissions by the activity-based method are two orders of magnitude and 60% less than those by the CEM, respectively. Comparing GHG emissions (as CO2 equivalent) from both methods, total GHG emissions by the activity-based methods are 12–27% lower than that by the CEM, as CO2 and N2O emissions are lower than those by the CEM. Results from uncertainty estimation show that uncertainties in the GHG emissions by the activity-based methods range from 3.4% to about 20%, from 67% to 900%, and from about 70% to about 200% for CO2, N2O, and CH4, respectively, while uncertainties in the GHG emissions by the CEM range from 4% to 4.5%. For the activity-based methods, an uncertainty in the Intergovernmental Panel on Climate Change (IPCC) default net calorific value (NCV) is the major uncertainty contributor to CO2 emissions, while an uncertainty in the IPCC default emission factor is the major uncertainty contributor to CH4 and N2O emissions. For the CEM, an uncertainty in volumetric flow measurement, especially for the distribution of the volumetric flow rate in a stack, is the major uncertainty contributor to all GHG emissions, while uncertainties in concentration measurements contribute a little to uncertainties in the GHG emissions.
Implications:Energy supply utilities contribute a significant portion of the global greenhouse gas (GHG) emissions. It is important to accurately estimate GHG emissions with their uncertainties for reducing GHG emissions and mitigating climate change. GHG emissions can be estimated by an activity-based method and by continuous emission measurement (CEM), yet little study has been done to calculate GHG emissions with uncertainty analysis. This study estimates GHG emissions and their uncertainties, and also identifies major uncertainty contributors for each method.  相似文献   

13.
Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.  相似文献   

14.
Today’s heavy-duty natural gas–fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas–fueled vehicles has been identified as a concern. Since today’s heavy-duty natural gas–fueled fleet penetration is low, today’s total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas–fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These “pump-to-wheels”(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions.

Implications: Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.  相似文献   


15.
Simulation models are one of the approaches used to investigate greenhouse gas emissions and potential effects of global warming on terrestrial ecosystems. DayCent which is the daily time-step version of the CENTURY biogeochemical model, and DNDC (the DeNitrification–DeComposition model) were tested against observed nitrous oxide flux data from a field experiment on cut and extensively grazed pasture located at the Teagasc Oak Park Research Centre, Co. Carlow, Ireland. The soil was classified as a free draining sandy clay loam soil with a pH of 7.3 and a mean organic carbon and nitrogen content at 0–20 cm of 38 and 4.4 g kg?1 dry soil, respectively. The aims of this study were to validate DayCent and DNDC models for estimating N2O emissions from fertilized humid pasture, and to investigate the impacts of future climate change on N2O fluxes and biomass production. Measurements of N2O flux were carried out from November 2003 to November 2004 using static chambers. Three climate scenarios, a baseline of measured climatic data from the weather station at Carlow, and high and low temperature sensitivity scenarios predicted by the Community Climate Change Consortium For Ireland (C4I) based on the Hadley Centre Global Climate Model (HadCM3) and the Intergovernment Panel on Climate Change (IPCC) A1B emission scenario were investigated. DayCent predicted cumulative N2O flux and biomass production under fertilized grass with relative deviations of +38% and (?23%) from the measured, respectively. However, DayCent performs poorly under the control plots, with flux relative deviation of (?57%) from the measured. Comparison between simulated and measured flux suggests that both DayCent model’s response to N fertilizer and simulated background flux need to be adjusted. DNDC overestimated the measured flux with relative deviations of +132 and +258% due to overestimation of the effects of SOC. DayCent, though requiring some calibration for Irish conditions, simulated N2O fluxes more consistently than did DNDC. We used DayCent to estimate future fluxes of N2O from this field. No significant differences were found between cumulative N2O flux under climate change and baseline conditions. However, above-ground grass biomass was significantly increased from the baseline of 33 t ha?1 to 45 (+34%) and 50 (+48%) t dry matter ha?1 for the low and high temperature sensitivity scenario respectively. The increase in above-ground grass biomass was mainly due to the overall effects of high precipitation, temperature and CO2 concentration. Our results indicate that because of high N demand by the vigorously growing grass, cumulative N2O flux is not projected to increase significantly under climate change, unless more N is applied. This was observed for both the high and low temperature sensitivity scenarios.  相似文献   

16.
Transport affects climate directly and indirectly through mechanisms that operate on very different timescales and cause both warming and cooling. We calculate contributions to the historical development in global mean temperature for the main transport sectors (road transport, aviation, shipping and rail) based on estimates of historical emissions and by applying knowledge about the various forcing mechanisms from detailed studies. We also calculate the development in future global mean temperature for four transport scenarios consistent with the IPCC SRES scenarios, one mitigation scenario and one sensitivity test scenario. There are large differences between the transport sectors in terms of sign and magnitude of temperature effects and with respect to the contributions from the long- and short-lived components. Since pre-industrial times, we calculate that transport in total has contributed 9% of total net man-made warming in the year 2000. The dominating contributor to warming is CO2, followed by tropospheric O3. By sector, road transport is the largest contributor; 11% of the warming in 2000 is due to this sector. Likewise, aviation has contributed 4% and rail ~1%. Shipping, on the other hand, has caused a net cooling up to year 2000, with a contribution of ?7%, due to the effects of SO2 and NOx emissions. The total net contribution from the transport sectors to total man-made warming is ~15% in 2050, and reaches 20% in 2100 in the A1 and B1 scenarios. For all scenarios and throughout the century, road transport is the dominating contributor to warming. Due to the anticipated reduction in sulphur content of fuels, the net effect of shipping changes from cooling to warming by the end of the century. Significant uncertainties are related to the estimates of historical and future net warming mainly due to cirrus, contrails and aerosol effects, as well as uncertainty in climate sensitivity.  相似文献   

17.
Carbon dioxide (CO2,) emissions in the European Community (EC) can be reduced by roughly 60 percent. A great many measures need to be taken to reach this reduction, with a total annual cost of ECU 55 milliard. Fossil fuel use is the main cause of CO2 emissions into the atmosphere; CO2 emissions are to a large extent responsible for the greenhouse effect. Energy saving (conservation) and nuclear energy appear to be the least expensive methods of CO2, abatement, directly followed by renewables. More expensive alternatives include the separation of CO2, at the source (e.g., power plants), followed by storage in depleted gas fields, aquifers, or in the ocean. Biological options, such as reforestation and energy farming, are the most expensive abatement methods; however, they do have secondary advantages, such as avoided fallow premiums and avoided export premiums on cereals. Application of all measures together can lead to the 60 percent reduction goal.  相似文献   

18.
Chemical looping combustion (CLC) is an inherent CO2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors—fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe2O3, CuO, and mixed carrier—Fe2O3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.  相似文献   

19.
Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NOx), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr?1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000–2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ~55 mW m?2 (23–87 mW m?2, 90% likelihood range), which was 3.5% (range 1.3–10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005–78 mW m?2 (38–139 mW m?2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2–14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7–3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0–4.0 over the 2000 value, representing 4–4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.  相似文献   

20.
This study proposes an easy-to-apply method, the Total Life Cycle Emission Model (TLCEM), to calculate the total emissions from shipping and help ship management groups assess the impact on emissions caused by their capital investment or operation decisions. Using TLCEM, we present the total emissions of air pollutants and greenhouse gases (GHGs) during the 25-yr life cycle of 10 post-Panamax containerships under slow steaming conditions. The life cycle consists of steel production, shipbuilding, crude oil extraction and transportation, fuel refining, bunkering, and ship operation. We calculate total emissions from containerships and compare the effect of emission reduction by using various fuels. The results can be used to differentiate the emissions from various processes and to assess the effectiveness of various reduction approaches. Critical pollutants and GHGs emitted from each process are calculated. If the containerships use heavy fuel oil (HFO), emissions of CO2 total 2.79 million tonnes (Mt), accounting for 95.37% of total emissions, followed by NOx and SOx emissions,which account for 2.25% and 1.30%, respectively.The most significant emissions are from the operation of the ship and originate from the main engine (ME).When fuel is switched to 100% natural gas (NG), SOx, PM10, and CO2 emissions show remarkable reductions of 98.60%, 99.06%, and 21.70%, respectively. Determining the emission factor of each process is critical for estimating the total emissions. The estimated emission factors were compared with the values adopted by the International Maritime Organization (IMO).The proposed TLCEM may contribute to more accurate estimates of total life cycle emissions from global shipping.

Implications: We propose a total life cycle emissions model for 10 post-Panamax container ships. Using heavy fuel oil, emissions of CO2 total 2.79 Mt, accounting for approximately 95% of emissions, followed by NOx and SOx emissions. Using 100% natural gas, SOx, PM10, and CO2 emissions reduce by 98.6%, 99.1%, and 21.7%, respectively. NOx emissions increase by 1.14% when running a dual fuel engine at low load in natural gas mode.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号