首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Background and Aim An accurate estimation of biogenic emissions of VOC (volatile organic compounds) is necessary for better understanding a series of current environmental problems such as summertime smong and global climate change. However, very limited studies have been reported on such emissions in China. The aim of this paper is to present an estimate of biogenic VOC emissions during summertime in China, and discuss its uncertainties and potential areas for further investigations. Materials and Methods This study was mainly based on field data and related research available so far in China and abroad, including distributions of land use and vegetations, biomass densities and emission potentials. VOC were grouped into isoprene, monoterpenes and other VOC (OVOC). Emission potentials of forests were determined for 22 genera or species, and then assigned to 33 forest ecosystems. The NCEP/NCAR reanalysis database was used as standard environmental conditions. A typical summertime of July 1999 was chosen for detailed calculations. Results and Discussion The biogenic VOC emissions in China in July were estimated to be 2.3×1012gC, with 42% as isoprene, 19% as monoterpenes and 39% as OVOC. About 77.3% of the emissions are generated-from forests and woodlands. The averaged emission intensity was 4.11 mgC m−2 hr−1 for forests and 1.12 mgC m−2 hr−1 for all types of vegetations in China during the summertime. The uncertainty in the results arose from both the data and the assumptions used in the extrapolations. Generally, uncertainty in the field measurements is relatively small. A large part of the uncertainty mainly comes from the taxonomic method to assign emission potentials to unmeasured species, while the ARGR method serves to estimate leaf biomass and the emission algorithms to describe light and temperature dependence. Conclusions This study describes a picture of the biogenic VOC emissions during summertime in China. Due to the uneven spatial and temporal distributions, biogenic VOC emissions may play an important role in the tropospheric chemistry during summertime. Recommendations and Perspectives Further investigations are needed to reduce uncertainties involved in the related factors such as emission potentials, leaf biomass, species distribution as well as the mechanisms of the emission activities. Besides ground measurements, attention should also be placed on other techniques such as remotesensing and dynamic modeling. These new approaches, combined with ground measurements as basic database for calibration and evaluation, can hopefully provide more comprehensive information in the research of this field. Submission Editor: Prof. Dr. Gerhard Lammel (lammel@recetox.muni.cz)  相似文献   

2.
A highly resolved temporal and spatial Pearl River Delta (PRD) regional emission inventory for the year 2006 was developed with the use of best available domestic emission factors and activity data. The inventory covers major emission sources in the region and a bottom–up approach was adopted to compile the inventory for those sources where possible. The results show that the estimates for SO2, NOx, CO, PM10, PM2.5 and VOC emissions in the PRD region for the year 2006 are 711.4 kt, 891.9 kt, 3840.6 kt, 418.4 kt, 204.6 kt, and 1180.1 kt, respectively. About 91.4% of SO2 emissions were from power plant and industrial sources, and 87.2% of NOx emissions were from power plant and mobile sources. The industrial, mobile and power plant sources are major contributors to PM10 and PM2.5 emissions, accounting for 97.7% of the total PM10 and 97.2% of PM2.5 emissions, respectively. Mobile, biogenic and VOC product-related sources are responsible for 90.5% of the total VOC emissions. The emissions are spatially allocated onto grid cells with a resolution of 3 km × 3 km, showing that anthropogenic air pollutant emissions are mainly distributed over PRD central-southern city cluster areas. The preliminary temporal profiles were established for the power plant, industrial and on-road mobile sources. There is relatively low uncertainty in SO2 emission estimates with a range of −16% to +21% from power plant sources, medium to high uncertainty for the NOx emissions, and high uncertainties in the VOC, PM2.5, PM10 and CO emissions.  相似文献   

3.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

4.
A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations.  相似文献   

5.
6.
We describe an experimental system and techniques for sampling and analyzing biogenic emissions of volatile organic compounds (VOC). The system uses a Teflon chamber to enclose a single branch of a tree. Temperature, photosynthetic active radiation (PAR), relative humidity and carbon dioxide concentration are continuously monitored with a time resolution of five minutes. VOCs are sampled on tubes containing solid adsorbents (Tenax TA and Carbotrap) with a time resolution of 1 h. Composition and concentration of VOC emissions are measured with a gas chromatographic system equipped with a flame ionization detector (FID) for quantitative and a mass spectrometer (MS) for qualitative analysis. To calibrate the system, a diffusion source was built to produce standard mixtures of up to 36 different compounds with mixing ratios at low concentrations and high accuracy. The diffusion rates were monitored over 17 months and showed variations between 0.2 and 7.6% for monoterpenes (expect for α-phellandrene, α-terpinene and γ-terpinene) and between 10.6 and 22.6% for sesquiterpenes. FID response factors calculated from calibration measurements were corrected using correction factors based on the effective carbon number concept. The individual response factors of 23 compounds were combined to a mean response factor (RFm) with a value of 23,100 μV s ng−1 and a standard deviation of 9%. The system described here was used to measure VOC emission rates of Scots pine (Pinus sylvestris) in 1998 and 1999.  相似文献   

7.
Abstract

Large-scale studies like the Southeast Michigan Ozone Study (SEMOS) have focused attention on quantifying and spedating inventories for volatile organic compounds (VOCs). One approach for evaluating the accuracy of a VOC emission inventory is the development of a chemical mass balance (CMB) receptor model for ambient non-methane organic compound (NMOC) measurements. CMB evaluations of ambient hydrocarbon data provide a sample-specific allocation of emissions to individual source categories. This study summarizes the results of an application of the CMB model to the NMOC data from the SEMOS study. Comparison of CMB results with emission inventory values for the Detroit area show that vehicle emissions are well represented by the inventory, as are architectural coatings and coke ovens. Estimated emissions from petroleum refineries and graphic arts industries are much lower in the inventory than determined from the receptor allocation. Under-reporting of fugitive VOC emissions from petroleum refineries is an ongoing problem. Emissions from graphic arts industries are underestimated in the inventory partly because of the broad characterization of the emission factor (i.e., mass emitted/capita), which may be less useful when specific locations and days are under consideration. This study also demonstrates the effectiveness of the CMB approach when used prospectively to track the implementation of emission control strategies. While vehicle emission concentrations were unchanged from 1988 to 1993, measurement-based CMB results suggest a decrease in evaporative emissions during this time period resulting from Reid vapor pressure (RVP) reductions (from 11.0 psi in 1988 to 8.6 psi in 1993) and fleet turnover. Changes in emissions from coke plants and petroleum refineries were also seen in the CMB allocations for these sources.  相似文献   

8.
ABSTRACT

This paper presents a methodology for the development of a high-resolution (30-m), standardized biogenic volatile organic compound (BVOC) emissions inventory and a subsequent application of the methodology to Tucson, AZ. The region's heterogeneous vegetation cover cannot be modeled accurately with low-resolution (e.g., 1-km) land cover and vegetation information. Instead, local vegetation data are used in conjunction with multispectral satellite data to generate a detailed vegetation-based land-cover database of the region. A high-resolution emissions inventory is assembled by associating the vegetation data with appropriate emissions factors. The inventory reveals a substantial variation in BVOC emissions across the region, resulting from the region's diversity of both native and exotic vegetation.

The importance of BVOC emissions from forest lands, desert lands, and the urban forest changes according to regional, metropolitan, and urban scales. Within the entire Tucson region, the average isoprene, monoterpene, and  相似文献   

9.
ABSTRACT

Oil and natural gas wells are a prominent source of the greenhouse gas methane (CH4), but most measurements are from newer, high producing wells. There are nearly 700,000 marginal “stripper” wells in the US, which produce less than 15 barrels of oil equivalent (BOE) d?1. We made direct measurements of CH4 and volatile organic carbon (VOC) emissions from marginal oil and gas wells in the Appalachian Basin of southeastern Ohio, all producing < 1 BOE d?1. Methane and VOC emissions followed a skewed distribution, with many wells having zero or low emissions and a few wells responsible for the majority of emissions. The average CH4 emission rate from marginal wells was 128 g h?1 (median: 18 g h?1; range: 0– 907 g h?1). Follow-up measurements at five wells indicated high emissions were not episodic. Some wells were emitting all or more of the reported gas produced at each well, or venting gas from wells with no reported gas production. Measurements were made from wellheads only, not tanks, so our estimates may be conservative. Stochastic processes such as maintenance may be the main driver of emissions. Marginal wells are a disproportionate source of CH4 and VOCs relative to oil and gas production. We estimate that oil and gas wells in this lowest production category emit approximately 11% of total annual CH4 from oil and gas production in the EPA greenhouse gas inventory, although they produce about 0.2% of oil and 0.4% of gas in the US per year.

Implications: Low producing marginal wells are the most abundant type of oil and gas well in the United States, and a surprising number of them are venting all or more of their reported produced gas to the atmosphere. This makes marginal wells a disproportionate greenhouse gas emissions source compared to their energy return, and a good target for environmental mitigation.  相似文献   

10.
On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NOx), and volatile organic compounds (VOCs) during 1995–2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NOx, and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995–2009 period despite an increase in total vehicle distance traveled. The CO and NOx emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NOx in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001–2009. Although this trend coexists with the declining trends in on-road NOx, VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors.
Implications:Large reductions in on-road vehicle emissions of CO and NOx in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NOx during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the benefits of past control measures.  相似文献   

11.
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the “Ratio”) from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.  相似文献   

12.
In order to investigate the secondary organic aerosol (SOA) response to changes in biogenic volatile organic compounds (VOC) emissions in the future atmosphere and how important will SOA be relative to the major anthropogenic aerosol component (sulfate), the global three-dimensional chemistry/transport model TM3 has been used. Emission estimates of biogenic VOC (BVOC) and anthropogenic gases and particles from the literature for the year 2100 have been adopted.According to our present-day model simulations, isoprene oxidation produces 4.6 Tg SOA yr−1, that is less than half of the 12.2 Tg SOA yr−1 formed by the oxidation of other BVOC. In the future, nitrate radicals and ozone become more important than nowadays, but remain minor oxidants for both isoprene and aromatics. SOA produced by isoprene is estimated to almost triple, whereas the production from other BVOC more than triples. The calculated future SOA burden change, from 0.8 Tg at present to 2.0 Tg in the future, is driven by changes in emissions, oxidant levels and pre-existing particles. The non-linearity in SOA formation and the involved chemical and physical feedbacks prohibit the quantitative attribution of the computed changes to the above-mentioned individual factors. In 2100, SOA burden is calculated to exceed that of sulfate, indicating that SOA might become more important than nowadays. These results critically depend on the biogenic emissions and thus are subject to the high uncertainty associated with these emissions estimated due to the insufficient knowledge on plant response to carbon dioxide changes. Nevertheless, they clearly indicate that the change in oxidants and primary aerosol caused by human activities can contribute as much as the change in BVOC emissions to the increase of the biogenic SOA production in the future atmosphere.  相似文献   

13.
14.
On the basis of the last inventory of forests and climatic conditions in Poland, a national evaluation of the emissions of reactive volatile organic compounds (VOCs) was carried out. Calculations took into account the composition and age structure of forests as well as the temperature dependencies of VOC emission rate for the main European forest-forming tree species. In the case of isoprene, the dependence on illumination level and day length was also taken into account. Estimations were made for all 49 administrative regions of Poland. Depending on weather conditions in different years, the total VOC emission of Polish forests can be in the range 186–763 kt yr−1. For instance, for a moderately warm year, 1992, it was estimated at 440.6 kt, which represents 25% of the total VOC emissions in Poland.  相似文献   

15.
Abstract

A grid-based, bottom-up method has been proposed by combining a vehicle emission model and a travel demand model to develop a high-resolution vehicular emission inventory for Chinese cities. Beijing is used as a case study in which the focus is on fuel consumption and emissions from hot-stabilized activities of light-duty gasoline vehicles (LGVs) in 2005. The total quantity of emissions, emission intensity, and spatial distribution of emissions at 1- by 1-km resolution are presented and compared with results from other inventory methods commonly used in China. The results show that the total daily fuel consumption and vehicular emissions of carbon dioxide, carbon monoxide, hydrocarbons, and oxides of nitrogen from LGVs in the Beijing urban area in 2005 were 1.95 × 107 L, 4.28 × 104 t, 1.97 × 103 t, 0.28 × 103 t, and 0.14 × 103 t, respectively. Vehicular fuel consumption and emissions show spatial variations that are consistent with the traffic characteristics. The grid-based inventory developed in this study reflects the influence of traffic conditions on vehicle emissions at the microscale and may be applied to evaluate the effectiveness of traffic-related measures on emission control in China.  相似文献   

16.
The weekly cycles of atmospheric ozone (O3) are of interest because they provide information about the response of O3 to changes in anthropogenic emissions from weekdays to weekends. The weekly behavior of O3 in Chicago, IL; Philadelphia, PA; and Atlanta, GA, is contrasted. In Chicago and Philadelphia, maximum 1-hr average O3 increases on weekends. In Atlanta, O3 builds up from Mondays to Fridays and declines during weekends. In all three areas, volatile organic compound (VOC)/nitrogen oxides (NOx) ratios are higher during weekends, resulting from greater than proportionate decreases in NOx relative to VOC emissions. The VOC/NOx ratios correlate with maximum 1-hr O3 concentrations in Chicago, a response consistent with a VOC-sensitive airshed. A weak correlation between O3 concentrations and VOC/NOx ratios in Philadelphia suggests the impact of transported O3, which is formed in upwind VOC-sensitive locations that may be hundreds of kilometers away. Ozone concentrations in Atlanta do not correlate with VOC/NOx ratios but with concentrations of NOx and total reactive nitrogen (NOy) carried over from the previous day. When data from 1986-1990 and 1995-1999 are compared, only small differences in the weekly behavior of O3 are observed in Chicago and Philadelphia. The day-of-week differences in O3 are amplified in the more recent period in Atlanta, a possible result of urban growth.  相似文献   

17.
ABSTRACT

The organic fraction of aerosol emitted from a vegetable oil processing plant was studied to investigate the contribution of emissions to ambient particles in the surrounding area. Solvent-soluble particulate organic compounds emitted from the plant accounted for 10% of total suspended particles. This percentage was lower in the receptor sites (less than 6% of total aerosol mass). Nonpolar, moderate polar, polar, and acidic compounds were detected in both emitted and ambient aerosol samples. The processing and combustion of olive pits yielded a source with strong biogenic characteristics, such as the high values of the carbon preference index (CPI) for all compound classes. Polycyclic aromatic hydrocarbons (PAHs) detected in emissions were associated with both olive pits and diesel combustion. The chromatographic profile of dimethyl-phenanthrenes (DMPs) was characteristic of olive pit combustion. Organic aerosols collected in two receptor sites provided a different pattern.

The significant contribution of vehicular emissions was identified by CPI values (~1) of n-alkanes and the presence of the unresolved complex mixture (UCM). In addition, PAH concentration diagnostic ratios indicated that emissions from catalyst and noncatalyst automobiles and heavy trucks were significant. The strong even-to-odd predominance of n-alkanols, n-alkanoic acids, and their salts indicated the contribution of a source with biogenic characteristics. However, the profile of DMPs at receptor sites was similar to that observed for diesel particulates. These differences indicated that the contribution of vegetable oil processing emissions to the atmosphere was negligible.  相似文献   

18.
Abstract

Grass, and particularly cut grass, recently has been shown to emit significant amounts of volatile organic compounds (VOCs) into the atmosphere. Some components of these emissions are highly reactive and may contribute to photochemical smog in urban areas. A simple model for estimating the VOC emissions from grass and for grass cutting that allows these processes to be included in urban/regional emissions inventories is presented here. Using previous work and recent literature values, estimates are made of these biogenic volatile organic compound (BVOC) emissions for two typical urban airsheds, those including the cities of Sydney and Melbourne in Australia. Grass and cut grass could contribute ~2% for Sydney and 3% for Melbourne of the total VOCs emitted into these urban atmospheres annually. These contributions could rise to 4 and 5%, respectively, during the weekends of the summer growing season and, thus, could contribute to weekday/weekend ozone differences. It is recommended that the emissions of BVOCs from grass and cut grass be included in urban and global emissions inventories so that more accurate predictions of smog chemistry can be determined.  相似文献   

19.
The present study presents the first detailed inventory for non-methane hydrocarbon emissions from vegetation over Greece. The emission inventory, based on a Geographic Information System (GIS), has a spatial resolution of 5×5 km2 and a time resolution of 1 h. For the area under study, the calculated yearly monoterpene emissions are higher than the corresponding isoprene ones. In addition to the methodology presented here, the CORINAIR methodology was also applied for the calculation of emission rates. This resulted in orders of magnitude differences in the calculated emission rates. The CORINAIR methodology is judged to lead to unrealistically high values of biogenic NMHC emission rates. The temperature dependence of the CORINAIR correction factors seems to affect most the emissions, together with grazing land emission factors.  相似文献   

20.
Abstract

A method using direct flame ionization detector (FID) measurement was developed to study total volatile organic compound (VOC) emissions during thermal degradation of polymers. This method was used to estimate organic emissions from different polymers, such as low-density polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and commingled postconsumer streams, such as recycled carpet residue and auto shredder residue (ASR). The effects of process parameters, such as temperature, heating rate, and residence time, were also studied. Significant VOC emissions were observed at normal processing temperatures, particularly from recycled polymers. Each polymer showed a distinct evolution pattern during its thermal degradation. The kinetics of VOC emissions were also studied using a nonisothermal technique. The kinetic parameters were in agreement with data from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号