首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Air Quality Control Program of the Commonwealth of Massachusetts has developed an implementation plan for the Metropolitan Boston Intrastate Air Quality Control Region as required by PL 90-148. An essential part of the plan was a set of control regulations designed to achieve and maintain an air quality compatible with adopted standards. Control strategy modeling was used as a tool in selecting the most appropriate regulations to achieve this goal. The body of information presented in this paper is directed to those state and county air pollution control officials concerned with the formulation and evaluation of regulations.

The paper details the procedures developed and presents a case history of their use in the region. The system is a synthesis of generally-available software and newly-developed computer programs to provide ahighly automated computational structure. It permits rapid simulation of the emissions resulting from the application of various control regulations. Predictions on the changes expected in ambient air quality levels are then made by the use of the Air Quality Display Model (AQDM).

The initial step in the application was a calibration of the system using predicted and measured annual concentrations. This step yielded correlation coefficients of 0.92 for sulfur dioxide and 0.85 for particulates. Subsequently, the system was used to evaluate the baseline case of uncontrolled sulfur in fuel use. Alternative sulfur control strategies were tested for compatibility with air quality standards. The principal strategies tested were: (a) 1% sulfur uniformly throughout the region; (6) 1% sulfur in core area of region, 2.2% sulfur elsewhere; (c) 0.5% sulfur in core area of region, 2.2% sulfur elsewhere; (d) 0.5% sulfur in core area of region, 1.0% sulfur elsewhere.

Strategies (b) and (d) were implemented into a time phased set of control regulations for the region.

Experience with the system has shown it to be a convenient and rapid method for simulating the effects of control regulations. Furthermore, the utility of this initial model warrants expansion of its application to the other air quality control regions in the Commonwealth.  相似文献   

2.
The application of two different types of elemental sulfur (S0) was studied to evaluate the efficiency on bioleaching of heavy metals from contaminated sediments. Bioleaching tests were performed in suspension and in the solid-bed with a heavy metal contaminated sediment using commercial sulfur powder (technical sulfur) or a microbially produced sulfur waste (biological sulfur) as substrate for the indigenous sulfur-oxidizing bacteria and thus as acid source. Generally, using biological sulfur during suspension leaching yielded in considerably better results than technical sulfur. The equilibrium in acidification, sulfur oxidation and metal solubilization was reached already after 10-14 d of leaching depending upon the amount of sulfur added. The metal removal after 28 d of leaching was higher when biological sulfur was used. The biological sulfur added was oxidized with high rate, and no residual S0 was detectable in the sediment samples after leaching. The observed effects are attributable to the hydrophilic properties of the biologically produced sulfur particles resulting in an increased bioavailability for the Acidithiobacilli. In column experiments only poor effects on the kinetics of the leaching parameters were observed replacing technical sulfur by biological sulfur, and the overall metal removal was almost the same for both types of S0. Therefore, under the conditions of solid-bed leaching the rate of sulfur oxidation and metal solubilization is more strongly affected by transport phenomena than by microbial conversion processes attributed to different physicochemical properties of the sulfur sources. The results indicate that the application of biological sulfur provides a suitable means for improving the efficiency of suspension leaching treatments by shortening the leaching time. Solid-bed leaching treatments may benefit from the reuse of biological sulfur by reducing the costs for material and operating.  相似文献   

3.
文中介绍了一种炉窑烟气调质、烟气除尘、烟气脱硫在一个单体结构中的一体化装置和在烟气除尘脱硫技术上的应用,并对该脱硫除尘装置与传统的半干法烟气脱硫除尘装置进行了比较。  相似文献   

4.
The application of geochemical signals in mosses is more and more popular to investigate the deposition of atmospheric pollutants, but it is unclear whether records of atmospheric sulfur in mosses differ between their diverse habitats. This study aimed to investigate the influence of growing condition on tissue sulfur and δ34S of Haplocladium microphyllum. Epilithic and terricolous mosses in open fields, mosses under different canopy conditions were considered. We found that tissue sulfur and δ34S of mosses under different habitats were not consistent and could not be compared for atmospheric sulfur research with each other even collected at the same site, moss sulfur and δ34S records would be distorted by subsoil and upper canopies in different degrees, which possibly mislead the interpretation of atmospheric sulfur level and sources. Consequently, mosses on open rocks can be used reliably to assess atmospheric-derived sulfur in view of their identical sulfur and δ34S evidences.  相似文献   

5.
目前烟气脱硫是控制SO2排放最有效的途径之一。本文综述了以稀土氧化物作为吸收剂或催化剂在烟气脱硫过程中应用的研究进展,重点介绍了稀土氧化物吸收或催化脱硫反应的机理及特殊性能,并对稀土氧化物材料吸收或催化脱硫方法的特点及应用前景进行了讨论。  相似文献   

6.
The effects of two sulfur (S) sources (SO(4)(2-), S(0)), and three rates of S application (0, 30, 120 mgS/kg) on the formation of iron plaque in the rhizosphere, and on the root surface of rice, and As (arsenic) uptake into rice (Oryza sativa L.) were studied in a combined soil-sand culture experiment. Significant differences in As uptake into rice between +S and -S treatments were observed in relation to S sources, and rates of S application. Concentrations of As in rice shoots decreased with increasing rates of S application. The mechanism could be ascribed to sulfur, induced the formation of iron plaque, since concentrations of Fe in iron plaque on quartz sands in the rhizosphere, and on the root surface of rice increased with increasing rates of S application. The results suggest that sulfur fertilization may be important for the development approaches to reducing As accumulation in rice.  相似文献   

7.
The present development in industry has greatly increased the consumption of fossil fuel all over the world. The sulfur present in these fuels on combustion impairs the atmosphere and has to be removed before or after combustion. Direct desulfurization is still in its initial stage of commercial application and is thought to be rather expensive. Most projects today are concerned with flue gas desulfurization and a few people have been successful in the pilot plant scale. Flue gas sulfur is usually recovered as sulfuric acid or ammonium sulfate. The Kiyoura-T.I.T. process employs a completely dry method to recover this sulfur as ammonium sulfate. However, the present trends in fertilizers show that there is a marked drop in the consumption of this type of fertilizer except for China and other Asian countries.

Experiments were carried out to produce a high grade phosphatic fertilizer with a larger field of application. The authors were successful in rendering the phosphate in phosphate rock water soluble by reacting it with the sulfate radical of the ammonium sulfate. Ammonium acid sulfate was used in the experiments and the phosphate radical was determined by a colorimeter utilizing the ammonium molybdate method.

The results showed a conversion and an extractability of 98%, when the molecular ratio of ammonium acid sulfate to the CaO in phosphate rock was in the vicinity of 1:1.4-1.5. The reaction time was 120-180 minutes.

The extracted liquid was crystallized and put through X ray diffractometer experiments which showed that most of the crystals were ammonium phosphate containing about 15% N and 39% P2O5 on a dry basis. Thus, it is evident that this could be effectively applied in a commercial scale plant, recovering the flue gas sulfur as ammonium phosphate. The Kiyoura-T.I.T. process can be utilized to recover the flue gas sulfur either as the sulfate or as the phosphate.  相似文献   

8.
Burning of western low sulfur coal, to reduce sulfur oxide emissions, has resulted in decreased electrostatic precipi-tator collection efficiencies. In an effort to restore pre-cipitator performance a flue gas conditioning program was established by the company. This paper is a brief history of Commonwealth Edison Company’s experience with sulfur trioxide as a flue gas conditioning agent. Testing at State Line Station has proven that sulfur trioxide conditioning can effectively be used to improve precipitator performance when burning low sulfur coals. Although the first phase of the conditioning program is not completed, information has been gained which is being used as a basis in design and evaluation of future systems.  相似文献   

9.
Several methods to prepare a biodesulfurization (BDS) biocatalyst were investigated in this study using a strain of Rhodococcus sp. 1awq. This bacterium could selectively remove sulfur from dibenzothiophene (DBT) via the "4S" pathway. DBT, dimethylsulfoxide (DMSO), sodium sulphate and mixed sulfur sources were used to study their influence on cell density, desulfurization activity, desulfurization ability, and the cost of biocatalyst production. In contrast to that observed from bacteria cultured in DBT, only partial desulfurization activity of strain 1awq was induced by DBT after cultivation in a medium containing inorganic sulfur as the sole sulfur source. The biocatalyst, prepared from culture with mixed sulfur sources, was found to possess desulfurization activity. With DMSO as the sole sulfur source, the desulfurization activity was shown to be similar to that of bacteria incubated in medium with DBT as the sole sulfur source. The biocatalyst prepared by this method with the least cost could remove sulfur from hydrodesulfurization (HDS)-treated diesel oil efficiently, providing a total desulfurization percent of 78% and suggesting its cost-effective advantage.  相似文献   

10.
介绍了活性焦烟气脱硫技术原理、流程和特点,该技术具有脱硫效率高、工况适应性强、流程简单、节水、无二次污染、可同时脱除多种污染物和可回收硫资源等优点,介绍了活性焦烟气脱硫技术在有色金属行业的发展和应用情况。针对我国硫资源和水资源短缺的国情,建议在有色金属行业加快推广应用活性焦烟气脱硫技术,在治理大气污染的同时回收硫资源。  相似文献   

11.
Lead dioxide cylinders are inexpensive sampling devices commonly used for an assessment of sulfur oxides in the atmosphere. This paper will report the results of basic studies intended to characterize some of the critical parameters of this method. The behavior of the system in the region of the critical loading percentages was determined as well as the effects of lead dioxide particle size, presence of reduced sulfur compounds, and use of different binders. From these studies it has been possible to show a definite relationship between allowable exposure times and atmospheric concentrations of sulfur dioxide with particle size as a major parameter  相似文献   

12.
Emission reductions were mandated in the Clean Air Act Amendments of 1990 with the expectation that they would result in major reductions in the concentrations of atmospherically transported pollutants. This paper investigates the form and magnitude of trends from 1989 to 1995 in atmospheric concentrations of sulfur dioxide, sulfate, and nitrogen at 34 rural sites in the eastern US. Across all sites, there is strong evidence of statistically significant declining trends in sulfur dioxide (median change of -35%) and sulfate concentrations (median change of -26%). In general, trends in nitrogen concentrations were not as pronounced (median change of -8%) as trends in the sulfur compounds. A regional estimate of trend for a cluster of sites in the Ohio River valley showed close correspondence between declining sulfur dioxide concentrations (-35%) and changes in sulfur dioxide emissions (-32%) in this region.  相似文献   

13.
Emissions of malodors are considered to be the greatest threat to the compost industry. In work presented here, several simple odor mitigation alternatives were investigated for their effectiveness in preventing the release of common odorants, such as terpenes, ammonia, and reduced sulfur compounds. The mitigation methods studied included the use of a blanket of finished compost, compost amendment mixed within the feedstock, odor neutralizing agents (ONAs), and oxygen release compounds (ORCs). Among the mitigation alternatives investigated in this study, the use of finished compost as a blanket and finished compost as an amendment yielded the most conclusive and significant results. Both of these alternatives yielded a substantial emission reduction for terpenes, ammonia, and reduced sulfur compounds. The application of finished compost blanket resulted in up to 95% reduction of terpene and 25% reduction of ammonia emissions. Blending the feedstock with finished compost also provided substantial reduction of terpene emissions ranging from 73.6 to 93.1% at the 24% blending ratio, and up to 85% ammonia reduction a the 35% blending ratio. Use of finished compost also provided 75% lower reduced sulfur compound emissions at the 12% blending ratio. Misting and application of odor neutralizing agents did not result in any consistent reduction in emissions for any of the odorous compounds tested.

Implications The odor emissions from composting are often considered to be the biggest threat to composting facilities. Because most facilities cannot afford enclosures and contained composting vessels, there is a need to inexpensively and effectively control the odor emissions from composting facilities. The findings of this research can lead the way for efforts to control odor easily and cost effectively. In fact, the application of a compost blanket for odor control is already gaining acceptance by the composting industry.  相似文献   

14.
Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-north-east of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data. Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to particulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission "signals" to particulate sulfur or light scattering.  相似文献   

15.
It is important to establish a reliable regional emission inventory of sulfur as a function of time when assessing the possible effects of global change and acid rain. This study developed a database of annual estimates of national sulfur emissions from 1850 to 1990. A common methodology was applied across all years and countries allowing for global totals to be produced by adding estimates from all countries. The consistent approach facilitates the modification of the database and the observation of changes at national, regional, or global levels. The emission estimates were based on net production (i.e., production plus imports minus exports), sulfur content, and sulfur retention for each country's production activities. Because the emission estimates were based on the above considerations, our database offers an opportunity to independently compare our results with those estimates based on individual country estimates. Fine temporal resolution clearly shows emission changes associated with specific historical events (e.g., wars, depressions, etc.) on a regional, national, or global basis. The spatial pattern of emissions shows that the US, the USSR, and China were the main sulfur emitters (i.e., approximately 50% of the total) in the world in 1990. The USSR and the US appear to have stabilized their sulfur emissions over the past 20 yr, and the recent increases in global sulfur emissions are linked to the rapid increases in emissions from China. Sulfur emissions have been reduced in some cases by switching from high- to low-sulfur coals. Flue gas desulfurization (FGD) has apparently made important contributions to emission reductions in only a few countries, such as Germany.  相似文献   

16.
ABSTRACT

Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-northeast of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data.

Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to par-ticulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission “signals” to particulate sulfur or light scattering.  相似文献   

17.
Environmental Science and Pollution Research - Co3O4 is a promising Hg0 removal catalyst for industrial application. Operating temperature and low sulfur resistance are two of the main problems...  相似文献   

18.
The application of Claus Plant sulfur recovery units to the coke oven gas (COG) acid gases at three Bethlehem Steel Corporation plants is discussed. While many of the problems encountered are not unique to coke oven gas-derived acid gases, it was found that special consideration must be given to the effect of components not normally encountered in the typical Claus plant application to petroleum derived gases. It is perhaps fortunate that the feed composition to the three units was sufficiently different to expedite recognition of the source of some of these difficulties. One substance of concern is the hydrogen cyanide normally found in COG acid gases. In the absence of some means of removing or decomposing this material before it enters the Claus Plant extensive corrosion within the unit is observed after a short period of time. This is due to the fact that, contrary to expectation, a substantial quantity of this material survives the burner flame. The various alternatives in its elimination are discussed. A second major contaminant in COG acid gases is particulate iron sulfide and iron cyanide. While the exact source of these materials is in doubt, there is little doubt that in the absence of their removal, inorganic blockages within the Claus Plant will occur. By properly accounting for the special properties of coke oven gas-derived acid gas we have recently achieved short term sulfur recovery efficiencies of 95% and higher.  相似文献   

19.
A detailed inventory of sulfur dioxide emissions was prepared as part of the Nashville Community Air Pollution Study conducted by the Public Health Service during 1958–59. The primary purpose of the inventory was to provide data for a study of the relationship between the emission of sulfur dioxide and measured ambient levels. The development of the inventory, data collection methods, and calculations are described. Ambient levels of sulfur dioxide were related to average emissions of sulfur dioxide in such a way (correlation coefficient = 0.81) that mean seasonal concentrations of atmospheric sulfur dioxide in square-mile areas could be predicted with fairly good confidence from a knowledge of sulfur dioxide emissions. For these long-period {average) predictions meteorological variables can be disregarded. On a square-mile basis, on the average, one ton of sulfur dioxide emitted per day produced a mean atmospheric sulfur dioxide concentration of 0.022 ppm, and 10 tons of sulfur dioxide per day produced a concentration of 0.067 ppm.  相似文献   

20.
ABSTRACT

Ultrafine particles (UFPs) pose a human health risk as they can penetrate deep into the respiratory system. The Harvard supersite in Boston, MA provides one of the longest time series of UFP concentrations. This study examined the hypothesis that long-term reductions in PM2.5 mass and sulfur have influenced UFP trends by limiting the ability of UFPs to coagulate onto the accumulation mode via polydisperse coagulation with larger particles. The study used Generalized Additive Models (GAMs) to assess whether changes in PM2.5 mass and sulfur concentrations resulted in smaller than expected (assuming no change in PM2.5 mass or sulfur) decreases in daily UFP trends over the 20-year period from 1999 to 2018. The impact of PM2.5 mass and sulfur changes were represented as UFP penalties. Bootstrapping was applied to calculate standard errors for the different trend and penalty estimates. Results showed that PM2.5 mass and sulfur concentrations declined significantly over the study period. The analysis found an estimated 7.3% (95% CI: 3.5, 11.1%) UFP penalty due to long-term PM2.5 mass trends, and a 9.9% (95% CI: 6.2, 13.7%) UFP penalty due to long-term sulfur trends. Findings from this study suggest that future UFP control efforts should account for the role of PM2.5 mass and sulfur changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号