首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Offensive exhaust odors are characteristic of diesel engines. One problem in control and reduction of odor is lack of understanding of odorant sources and mode of formation. The solution of this problem depends on identification of the odorants so that study of their formation and control can be undertaken. A human panel performed odor assessments in studying raw and modified diesel exhaust and synthetic blends representing portions of diesel exhaust. Their assessments were used in determining odorant identity and quantitative contribution to exhaust odor. Low molecular weight aldehydes appear to contribute little to diesel odors. The sulfur and nitrogen oxides have been examined as odorants but of these apparently only nitrogen dioxide is a potential odor contributor.  相似文献   

2.
Ray S  Kim KH  Yoon HO 《Chemosphere》2012,87(5):557-565
As a basic means to control odorants released from a landfill leachate treatment station (LLTS), effluents venting from this station were treated via incineration with methane rich landfill gas (at 750 °C). A list of the key offensive odorants covering 22 chemicals was measured by collecting those gas samples both before and after the treatment. Upon incineration, the concentration levels of most odorants decreased drastically below threshold levels. The sum of odorant intensities (SOIs), if compared between before and after incineration, decreased from 6.94 (intolerable level) to 3.45 (distinct level). The results indicate that the thermal incineration method can be used as a highly efficient tool to remove most common odorants (e.g., reduced sulfur species), while it is not so for certain volatile species (e.g., carbonyls, fatty acids, etc.).  相似文献   

3.
Livestock operations are associated with emissions of odor, gases, and particulate matter (PM). Livestock odor characterization is one of the most challenging analytical tasks. This is because odor-causing gases are often present at very low concentrations in a complex matrix of less important or irrelevant gases. The objective of this project was to develop a set of characteristic reference odors from a swine barn in Iowa and, in the process, identify compounds causing characteristic swine odor. Odor samples were collected using a novel sampling methodology consisting of clean steel plates exposed inside and around the swine barn for < or =1 week. Steel plates were then transported to the laboratory and stored in clean jars. Headspace solid-phase microextraction was used to extract characteristic odorants collected on the plates. All of the analyses were conducted on a gas chromatography-mass spectrometry-olfactometry system where the human nose is used as a detector simultaneously with chemical analysis via mass spectrometry. Multidimensional chromatography was used to isolate and identify chemicals with high-characteristic swine odor. The effects of sampling time, distance from a source, and the presence of PM on the abundance of specific gases, odor intensity, and odor character were tested. Steel plates were effectively able to collect key volatile compounds and odorants. The abundance of specific gases and odor was amplified when plates collected PM. The results of this research indicate that PM is major carrier of odor and several key swine odorants. Three odor panelists were consistent in identifying p-cresol as closely resembling characteristic swine odor, as well as attributing to p-cresol the largest odor response out of the samples. Further research is warranted to determine how the control of PM emissions from swine housing could affect odor emissions.  相似文献   

4.
Chlorinated phenolic hydrocarbons are used as intermediate chemicals in the manufacture of 2,4-D (2,4-Dichlorophenoxy-acetic Acid) and related herbicides. These chemicals have an unusual odor with an extremely low threshold level of detection and consequently the manufacture and handling of these compounds poses a difficult odor control problem. Chipman Chemical Company at its Portland, Oregon plant has developed a system of fume collection and caustic soda solution scrubbing capable of removing phenolic compounds in the plant exhaust air to an acceptable level from an odor release standpoint. This article describes the development, present status, and projected future improvements of this odor control system.  相似文献   

5.
Odor emission from livestock production systems is a major nuisance in many rural areas. This study aimed at determining the major airborne chemical compounds responsible for the unpleasant odor perceived in swine facilities during slurry handling, and at proposing predictive models of odor concentration (OC) based on the concentrations of specific odorants in the air. A multivariate data analysis strategy involving principal components analysis and multiple linear regressions was implemented to analyze the relationships between concentration of 35 gases (measured by GC/MS or gas detection tubes), and the overall OC perceived by sensory analysis. The study compiled data on the concentration of odor and odorants, measured in the headspace of 24 unstored and stored slurry samples collected from three different types of production units on 8 commercial swine farms. Among all the measured constituents, OC was found to have the highest correlation with the sulfur containing compounds (i.e. hydrogen sulfide, dimethylsulfide, dimethyldisulfide, dimethyltrisulfide). The concentration of hydrogen sulfide accounted for 68% of the variation in OC above the stirred slurry samples. The highest concentrations of volatile organic compounds were observed for phenols and indoles, which made a significant contribution to the overall OC when the slurry was fresh. The contribution of ammonia to the OC was only significant in the absence of hydrogen sulfide. The precision of predictive models of OC based on the concentration of specific odorants in the air was satisfactory (R2 between 0.66 and 0.89). Hence, this study suggests that monitoring of specific odor compounds released from agitated swine slurry can be used to predict the concentration of odor perceived close to the source (e.g. at storage units), allowing the assessment of odor nuisance potentials.  相似文献   

6.
The effectiveness of 18 alternative technologies for reducing odor dispersion at and beyond the boundary of swine facilities was assessed in conjunction with an initiative sponsored through agreements between the Attorney General of North Carolina and Smithfield Foods, Premium Standard Farms, and Frontline Farmers. The trajectory and spatial distribution of odor emitted at each facility were modeled at 200 and 400 m downwind from each site under two meteorological conditions (daytime and nighttime) using a Eulerian-Lagrangian model. To predict the dispersion of odor downwind, the geographical area containing the odorant sources at each facility was partitioned into 10-m2 grids on the basis of satellite photographs and architectural drawings. Relative odorant concentrations were assigned to each grid point on the basis of intensity measurements made by the trained odor panel at each facility using a 9-point rating scale. The results of the modeling indicated that odor did not extend significantly beyond 400 m downwind of any of the test sites during the daytime when the layer of air above the earth's surface is usually turbulent. However, modeling indicated that odor from all full-scale farms extended beyond 400 m onto neighboring property in the evenings when deep surface cooling through long-wave radiation to space produces a stable (nocturnal) boundary layer. The results also indicated that swine housing, independent of waste management type, plays a significant role in odor downwind, as do odor sources of moderate to moderately high intensity that emanate from a large surface area such as a lagoon. Human odor assessments were utilized for modeling rather than instrument measurements of volatile organic compounds (VOCs), hydrogen sulfide, ammonia, or particulates less than 10 microm in diameter (PM10) because these physical measurements obtained simultaneously with human panel ratings were not found to accurately predict human odor intensity in the field.  相似文献   

7.
Intensity and threshold dilution ratio are two important indices for odor control of swine buildings. Although odor threshold dilution ratio is a widely used index to describe an odor, it should be related to intensity to be more useful. A method was proposed to measure both indices simultaneously by using a dynamic forced-choice olfactometer. Four air samples were taken from each of four swine rooms including farrowing, finisher, gestation, and nursery. A panel of eight people was used to evaluate odor intensity. Odor threshold dilution ratios were calculated according to the American Society for Testing and Materials (ASTM) Standard Practice E679-91 to be 333, 424, 25, and 221 for samples collected from farrowing, finisher, gestation, and nursery rooms, respectively. After the samples were diluted 14.7 times, the odor intensities were evaluated to be 3.79, 3.46, 0.48, and 4.0 for the above-mentioned rooms, respectively. The data collected were used to develop a mathematical model.  相似文献   

8.
ABSTRACT

Intensity and threshold dilution ratio are two important indices for odor control of swine buildings. Although odor threshold dilution ratio is a widely used index to describe an odor, it should be related to intensity to be more useful. A method was proposed to measure both indices simultaneously by using a dynamic forced-choice olfacto-meter. Four air samples were taken from each of four swine rooms including farrowing, finisher, gestation, and nursery. A panel of eight people was used to evaluate odor intensity. Odor threshold dilution ratios were calculated according to the American Society for Testing and Materials (ASTM) Standard Practice E679-91 to be 333, 424, 25, and 221 for samples collected from farrowing, finisher, gestation, and nursery rooms, respectively. After the samples were diluted 14.7 times, the odor intensities were evaluated to be 3.79, 3.46, 0.48, and 4.0 for the above-mentioned rooms, respectively. The data collected were used to develop a mathematical model.  相似文献   

9.
A portable 1-butanol olfactometer was developed for quantifying odors in ambient air. Panelists compare the intensity of ambient odors with the intensity of discrete levels of 1-butanol provided by the olfactometer. Range of delivered 1-butanol concentrations Is 0 to 80 ppm in air at a flow rate of 15 L/min. Laboratory tests were performed to ascertain overall precision, consistency of panelist responses, uniqueness of each odor step, variability between two Identical olfactometers, and effect of delivery method. For 855 pairs of matched odor Intensities, the ratio of measured butanol concentration to set concentration averaged 0.984 or —0.023 scale steps (where the scale steps differ In concentration by factors of two). In field experiments the equivalent ambient odor Intensities determined by odor panels using the butanol olfactometer ranged from 1.5 ppm to 64 ppm of 1-butanol vapor In air. The precision of ambient odor measurements was within one-half scale step on the 1-butanol olfactometer, sufficient for most odor investigation and abatement research applications.  相似文献   

10.
To correlate the odor strength of natural gas with its sulfur analysis, the recognition odor thresholds of 18 sulfur compounds were determined using an untrained panel of 35 peopie. For each test a series of odor concentrations graduated in increments of 100.2 was presented to the panel in random order over a range of concentrations above and below the olfactory thresholds of all panelists. Each odor was tested on at least three different days. Desired odor concentrations were produced by dynamic blending of gaseous mixtures of the odorous compounds with air. All testing was done out-of-doors during clement weather when no ambient odors were apparent. The range of olfactory response was found to be much greater for certain compounds than for others. Branching of the hydro-carbon chain increased odor strength. Certain compounds appeared to evoke anomalous responses.  相似文献   

11.
ABSTRACT

The following models of odor intensity for swine units were evaluated: the Weber-Fechner law model, the power law model, the Stevens model, and the Beidler model. Data were collected from four swine rooms (farrowing, finisher, gestation, and nursery) and odor threshold dilution ratios were measured by a panel using a dynamic forced-choice olfactometer. Odor intensity scales were determined by eight panelists using a six-point category scale method. A nonlinear parameter estimation method was used to estimate the parameters in each of the models. The widely used Weber-Fechner law did not adequately fit the data of odor intensity and threshold. Both the power law and the Beidler models described the data effectively, but the Beidler model showed the best fit of the data and was used as the model to represent the relationship between odor intensity and threshold dilution ratio for swine buildings.  相似文献   

12.
The emissions from five commonly used building products were studied in small-scale test chambers over a period of 50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of the test chamber and building product area in the test chamber. The air velocity over the building product samples was adjusted to different levels between 0.1 and 0.3 m s-1. The origin of the emitted VOCs was assessed in order to distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation, increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building products only decayed modestly over time. Consequently, it is recommended to use building products which have a low impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the long run. Some of the building products continued to affect the perceived air quality despite the concentrations of the selected VOCs resulted in odor indices less than 0.1. Therefore, odor indices less than 0.1 as an accept criterion cannot guarantee that a building product has no impact on the perceived air quality.  相似文献   

13.
From the hygienic point of view, not only the health hazards caused by air pollutants but also the odor from emitted flue gases should be reduced to a minimum. An effective control of the risk of odor at ground level presupposes knowledge of the source concentration of the odoriferous gas as well as its odor threshold. This threshold has to be estimated empirically, as the flue gases often contain a complex mixture of different odoriferous substances, the odor thresholds of which are in most cases unknown. For this purpose a method has been developed for estimating the odor thresholds of flue gases emitted, from different industrial processes. The method, afield method, is based on an exposure procedure, a number of subjects compare different concentrations of the flue gas with samples of fresh air and decide at what concentration the flue gas is no longer noticeable. The gas samples used are neither compressed, nor absorbed or heated before the exposure test. The method has been used in two studies on gases from Swedish sulfate cellulose plants. In order to estimate the effect on the odor threshold of different deodorizing measures, gas samples were taken not only from the stack but also from different phases in the production process. The results and a brief discussion on the practical applications of the method are given.  相似文献   

14.
The quality of rural life can be affected by offensive odors released from animal buildings and storage units. The objectives of this study were to compare the concentrations of odor and odorants above different types of stirred swine slurry to analyze the relationships between concentrations of odor (and odorants) and physicochemical characteristics of the slurry (i.e. pH, temperature, dry matter, volatile solids, and concentration of 22 chemical compounds); and to propose predictive models for the odor concentration (OC) based on these physicochemical characteristics (solely and in combination with concentrations of specific odorants in the air above the slurries). The study comprised data on concentrations of odor and odorants in the air above slurry samples (fresh and/or stored) collected from production units with farrowing sows, finishing swines, or weaning pigs at eight swine operations (N = 48). OC measured in the air above stirred swine slurry samples were not significantly different among production types or storage times. The physicochemical characteristics of the slurries were not useful for predicting OC or concentrations of hydrogen sulfide (or organic sulfides) above the slurry, but were related to concentrations of other emitted gases such as phenols and indoles (r2 = 0.65–0.79, p <0.05), ammonia (r2 = 0.86, p < 0.05) and carboxylic acids (r2 = 0.23–0.59, p <0.05). There was good precision of predictive models of OC based on selected slurry characteristics (i.e. pH, dry matter, nitrogen content, sulfur content or concentrations of individual aromatic compounds and carboxylic acids) together with concentrations of specific odorants in the air (e.g. hydrogen sulfide) (r2 between 0.70 and 0.92). This study suggests that predictive models could be useful for evaluating odor nuisance potentials of swine slurry during handling.  相似文献   

15.
Used supply air filters were studied by sensory and chemical methods. In addition, filter dust was examined by thermodesorption/cold trap (TCT) and headspace (HS) devices connected to a GC–MS. The prefilter was the main odor source in the ventilation unit, but when humidifier was turned on odor was released mainly from the fine filter. However, the effect of the relative humidity (RH) was only temporary. At the same time, there was an increase in the concentration of aldehydes after the filters. Aldehydes, carboxylic acids, and nitrogen-containing organic compounds were the main emission products in the thermodesorption analyses of the filter dust. Many of these compounds have low odor threshold values and, therefore, contribute to the odor released from the filters. Especially, the role of aldehydes seems to be important in the odor formation.  相似文献   

16.
Certain odor control regulations specify use of the Scentometer for ambient odor measurement. This evaluation is usually performed by a single individual who is surrounded by the odorous environment to be measured. A method is desired where an ambient odor sample can be evaluated by an adequate size panel in an odor-free atmosphere. A dynamic forced-choice triangle olfactometer was designed and constructed to measure ambient odors. Teflon bags of 18 liter capacity collect a sample within 2-3 minutes which includes pre-flushing the bag. The sample is evaluated by a dynamic olfactometer equipped with 5 dilution levels (81×, 27×, 9×, 3× and undiluted sample). Three sniffing ports are provided at each dilution level to present dynamically one diluted odor stimulus and two odor-free air blanks. Each panelist is required to indicate which port contains the odor. Evaluation of one sample is routinely completed by a panel of 9 within less than 15 minutes. The odor threshold value (ED50) for the panel is calculated by use of a simple table derived statistically. No significant loss of odor was observed in sampling and in storage of rendering odors up to 48 hours. Bags were reusable after flushing with odor-free air. Reproducibility of log ED50 values by the same panel was within a σ = 0.10 log10. Agreement in evaluating duplicate field samples by two different panels was within the same limits. Under controlled laboratory conditions, a Scentometer reading of D/T = 2 was equivalent to an ED50 = 4.8; and D/T = 7 was equal to ED50 = 9.5.  相似文献   

17.
Odor intensity reveals a dose-effect relationship between inhaled odor and perceived odor sensation by the receptors, while odor concentration reflects the odor strength at the emission sources. The study reports significant improvements in experimental procedures in establishing the odor concentration-intensity (OCI) relationships using a newly developed digital olfactometer. The improvements in experimental procedures have been made to meet the requirements of both the VDI guideline 3882.1 and the European standard (EN13725). Several areas which could affect the reliability of the results have been identified in some similar studies. The latest digital olfactometer was calibrated automatically to ensure accurate and repeatable dilution ratios. Cross contamination has been eliminated through the instrument design and extensive cleaning procedures, making random presentation possible. Stringent panelist screening and continuous performance monitoring ensures consistent sensitivity of the panel. The extension of odor intensity category to temperature sensation gives a reference to assist judgments of perceived odor sensation. The DynaScent calculation method has simplified odor intensity calculation and can be applied to many odor samples. A total of 38 odor samples from three alumina refinery sites and two sewage treatment plants were collected for analysis. The results have confirmed the efficiency of the olfactometer. Distinct Odor Concentrations (DOCs) were calculated for each sample using both VDI and DynaScent methods. A student t test on two major odor types confirmed that there are no significant differences between two methods. The study has shown the DOCs for refinery odor and wastewater odor are in the range of 3.8-15.4 and 4.2-15.6 odor unit (OU)/m3 respectively. The study demonstrated that the improvements are critical in achieving reliable odor intensity measurement. This can lead to the setup of quantitative odor impact criteria for different industries and sites.  相似文献   

18.
All odor measurement methods may be conveniently grouped into three categories: (1) threshold; (2) suprathreshold; and (3) analytical. The threshold techniques include such methods as syringe dilution, scentometer, and osmoscope. Suprathreshold techniques include direct comparison methods and dilution methods involving subjective ratings of preference as opposed to intensity. Analytical techniques involve the use of physicochemrcal methods, e.g., for monitoring of process streams or identification of individual odorants. The relative advantages and disadvantages of each method, as presently used, are discussed. Recommended applications for the various methods and suggested modifications are also presented.  相似文献   

19.
ABSTRACT

To obtain annual odor emission profiles from intensive swine operations, odor concentrations and emission rates were measured monthly from swine nursery, farrowing, and gestation rooms for a year. Large annual variations in odor concentrations and emissions were found in all the rooms and the impact of the seasonal factor (month) was significant (P < 0.05). Odor concentration was low in summer when ventilation rate was high but high in winter when ventilation rate was low, ranging from 362 (farrowing room in July) to 8934 (nursery room in December) olfactory unit (OU) m?3. This indicates that the air quality regarding odor was significantly better in summer than that in winter. Odor emission rate did not show obvious seasonal pattern as odor concentration did, ranging from 2 (gestation room in November) to 90 (nursery room in April) OU m?2 sec?1; this explains why the odor complaints for swine barns have occurred all year round. The annual geometric mean odor concentration and emission rate of the nursery room was significantly higher than the other rooms (P < 0.05). In order to obtain the representative annual emission rate, measurements have to be taken at least monthly, and then the geometric mean of the monthly values will represent the annual emission rate. Incorporating odor control technologies in the nursery area will be the most efficient in reducing odor emission from the farm considering its emission rate was 2 to 3 times of the other areas. The swine grower-finisher area was the major odor source contributing 53% of odor emission of the farm and should also be targeted for odor control. Relatively positive correlations between odor concentration and both H2S and CO2 concentrations (R 2 = 0.58) means that high level of these two gases might likely indicate high odor concentration in swine barns.

IMPLICATIONS The emissions of air pollutants including odors, greenhouse gases, and toxic gases have become a major environmental issue facing animal farms in the U.S.A. and Canada. To ensure the air quality in the vicinity of intensive livestock farms, air dispersion models have been used to determine setback distances between livestock facilities and neighboring residences based on certain air quality requirement on odor and gases. Due to the limited odor emission data available, none of the existing models can take account of seasonal variations of odor emissions, which may result in great uncertainties in setback distance calculations. Therefore, the obtained seasonal odor and gas emission rates by this study can be used by the government regulatory organizations and researchers in air dispersion modeling to get improved calculation of setback distances.  相似文献   

20.
Abstract

Odor intensity reveals a dose-effect relationship between inhaled odor and perceived odor sensation by the receptors, while odor concentration reflects the odor strength at the emission sources. The study reports significant improvements in experimental procedures in establishing the odor concentration-intensity (OCI) relationships using a newly developed digital olfactometer. The improvements in experimental procedures have been made to meet the requirements of both the VDI guideline 3882.1 and the European standard (EN13725). Several areas which could affect the reliability of the results have been identified in some similar studies. The latest digital olfactometer was calibrated automatically to ensure accurate and repeatable dilution ratios. Cross contamination has been eliminated through the instrument design and extensive cleaning procedures, making random presentation possible. Stringent panelist screening and continuous performance monitoring ensures consistent sensitivity of the panel. The extension of odor intensity category to temperature sensation gives a reference to assist judgments of perceived odor sensation. The Dyna-Scent calculation method has simplified odor intensity calculation and can be applied to many odor samples. A total of 38 odor samples from three alumina refinery sites and two sewage treatment plants were collected for analysis. The results have confirmed the efficiency of the olfactometer. Distinct Odor Concentrations (DOCs) were calculated for each sample using both VDI and DynaScent methods. A student t test on two major odor types confirmed that there are no significant differences between two methods. The study has shown the DOCs for refinery odor and wastewater odor are in the range of 3.8-15.4 and 4.2-15.6 odor unit (OU)/m3 respectively. The study demonstrated that the improvements are critical in achieving reliable odor intensity measurement. This can lead to the setup of quantitative odor impact criteria for different industries and sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号