首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Exposures to adequate environmental levels of CO will increase COHb concentrations in human subjects. The amount of this increase is reasonably predictable, and must be considered in relation to exposure to CO in inhaled cigarette smoke as well as to occupational and domestic exposures. The increase in body COHb will result in some degree of impairment of tissue oxygenation.

Methods for estimating COHb levels in large populations are relatively simple. The assumption that an exposure to 30 ppm CO for eight hours will produce on the average, an increase in COHb of 5%, has been substantiated by available data.

Exposure for five hours to between 10 and 12 ppm of CO has been shown to increase the COHb levels in nonsmokers by at least 0.5%. Such an increase adds appreciably to the body burden of COHb in those who do not already have such a body burden from cigarette smoking. Longer exposures could have produced a somewhat greater increase.

Apart from increases in COHb, three possible effects have been a source of major consideration in epidemiologic studies. The first is the production of some persistent toxic reaction. This possibility has been examined with respect to occupational exposure, and the evidence for the occurrence of such a condition is insufficient.

The possible contribution of ambient community CO exposure to the mortality of persons hospitalized with myocardial infarction has been investigated. The evidence suggests that daily average CO values in excess of about 10 ppm may be associated with an increase in mortality in hospitalized patients with myocardial infarction. Substantiation of this impression will require a study of the prognosis of myocardial infarction patients in relationship to COHb levels measured at admission to the hospital.

Finally, in two studies, persons driving motor vehicles which were involved in accidents had higher COHb levels than "control" populations. Controls were not ideal, however. Possible mechanisms by which CO might affect the ability to drive a motor vehicle is suggested in the available data on CO effects upon visual sensitivity, psychological test performance and accurate estimation of time intervals. As little as 2 percent COHb can produce these effects in laboratory studies, and the available epidemiologic information confirms that such an increase in COHb levels among drivers might influence the frequency of accidents.

Specific areas where research is indicated to clarify uncertainties relating to health effects of CO are: 1. The increment in COHb which can be produced by exposures to an average of 20 ppm CO for an eight hour period and the increment which can be produced by 15 ppm for such a period and by 10 ppm for up to twenty-four hours.

2. The relationship of ambient CO levels and of COHb levels to the survival of hospitalized patients with myocardial infarction.

3. The prognostic significance with respect to cardiovascular conditions of elevated levels of COHb.

4. The relationship, if any, between ambient CO and COHb levels and the occurrence of motor vehicle accidents when weather and driving conditions, cigarette smoking, alcohol and drug use, and other factors are adjusted and controlled.

  相似文献   

2.
本文研究了洗浴废水在生物转盘中不同停留时间的处理效果。研究结果显示 :在停留时间为 0 .2 5— 1.5h内 ,洗浴废水中的CODCr、BOD5、SS和LAS的去除率随停留时间的增加其增幅较大 ,但随着停留时间的继续延长 ,去除率增加幅度逐渐变小 ,研究结果表明 ,洗浴废水生物处理的最佳停留时间为 1.5h。  相似文献   

3.
Passive air sampling theory for semivolatile organic compounds   总被引:2,自引:0,他引:2  
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.  相似文献   

4.
采用添加蚯蚓的毛细管渗滤沟A和没有蚯蚓的毛细管渗滤沟B对生活污水处理进行对比实验研究,同时考察毛细管渗滤沟中蚯蚓的数量变化和添加蚯蚓对土壤结构的影响。实验结果表明:蚯蚓对毛细管渗滤沟处理有机物有促进作用,蚯蚓的加入可以改变土壤结构,提高土壤孔隙率,增加出水溶解氧。反过来,毛细管渗滤沟为蚯蚓生存、繁殖提供了适宜条件,在土...  相似文献   

5.
Environmental Science and Pollution Research - Inevitably increase in plastic demand has resulted in an overgrowing production on a global scale. The utilization of plastics has been applied to a...  相似文献   

6.
The body of information presented in this paper is directed to administrators of smaller authorities—defined, arbitrarily, as those with small staff and not embracing large metropolitan areas. As their activities increase, viable programs are likely to produce prodigious quantities of data, necessitating the use of modern computers for most efficient analysis.

Remote links with high-speed time sharing computers provide a means for smaller authorities to satisfy this need. The capabilities of a large computer can be brought into the local office to handle (a) administrative and enforcement problems, (b) technical data analysis, and (c) instructional needs.

A data handling system being developed for use by the Northwest Air Pollution Authority is described, together with an examination of its potential utility to the Authority as its activities increase.  相似文献   

7.
Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1-0.2 degrees C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 degrees C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5-1 degrees C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 degrees C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2-2.5 degrees C above its 1750 value of approximately 15 degrees C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modem society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.  相似文献   

8.
Climate change factors such as elevated CO2 concentrations, warming and changes in precipitation affect the stomatal flux of ozone (O3) into leaves directly or indirectly by altering the stomatal conductance, atmospheric O3 concentrations, frequency and extent of pollution episodes and length of the growing season. Results of a case study for winter wheat indicate that in a future climate the exceedance of the flux-based critical level of O3 might be reduced across Europe, even when taking into account an increase in tropospheric background O3 concentration. In contrast, the exceedance of the concentration-based critical level of O3 will increase with the projected increase in tropospheric background O3 concentration. The influence of climate change should be considered when predicting the future effects of O3 on vegetation. There is a clear need for multi-factorial, open-air experiments to provide more realistic information for O3 flux-effect modelling in a future climate.  相似文献   

9.
鼠李糖脂洗脱氯丹和灭蚁灵污染场地土壤的工艺参数   总被引:3,自引:0,他引:3  
优化了鼠李糖脂洗脱氯丹、灭蚁灵污染土壤的工艺条件,为开展有机氯农药污染场地土壤洗脱修复工程实践提供科学依据和技术参数。实验结果表明,随着洗脱剂———鼠李糖脂浓度的增加,氯丹和灭蚁灵的洗脱量呈现先增加后降低的趋势;洗脱时间和液固比对洗脱效果的影响趋势与浓度相同;在0~120 r/min范围内,氯丹和灭蚁灵洗脱量随着搅拌速度的增加而增大,80、120和200 r/min的洗脱量间差异不显著;单次洗脱量随洗脱次数的增加而降低,累计洗脱量则逐渐增大。综上所述,氯丹、灭蚁灵污染场地土壤鼠李糖脂洗脱的适宜工艺参数为鼠李糖浓度10 mmol/L,搅拌速度80 r/min,固液比1∶10,洗脱时间20 min,洗脱3次。  相似文献   

10.
大型城市客车加速模拟工况排放特性的实验研究   总被引:3,自引:0,他引:3  
通过对258辆大型城市客车进行加速模拟工况排放测试,研究了城市客车的排放特性,比较了压缩天然气(CNG)车辆与汽油车辆的排放特性,分析了车辆车龄与排放的关系、发动机燃油供给方式与排放的关系,以及车辆总质量与排放的关系。研究结果表明:燃用CNG的车辆其CO、NOx排放较汽油低许多,尤其是CO,但HC排放较汽油高;电喷车辆的CO、NOx排放比化油器车低,但HC排放值高于化油器车;车龄增长,车辆的CO、NOx排放值增大,但HC变化不明显;车辆总质量增加,排放呈下降趋势。  相似文献   

11.
Abstract

Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1–0.2 °C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 °C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5–1 °C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 °C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2–2.5 °C above its 1750 value of approximately 15 °C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modern society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.  相似文献   

12.
Environmental Science and Pollution Research - In a context of scarcity of good quality water, reuse is a mandatory practice to increase water availability, thus allowing the exploitation of more...  相似文献   

13.
Environmental Science and Pollution Research - The alarming increase in the average temperature of the planet due to the massive emission of greenhouse gases has stimulated the introduction of...  相似文献   

14.
Environmental Science and Pollution Research - Nowadays, because of the increase in consumption of electronic equipment and its resource utilization, household e-waste has been generated gradually....  相似文献   

15.
Wang J  Song Y  Yuan P  Peng J  Fan M 《Chemosphere》2006,65(7):1182-1187
The crystallization of magnesium ammonium phosphate (MAP) is one of the main processes for recovering P and N from wastewater. Chemically defined solution systems were designed; the saturation indices (SIs) of the solution systems with respect to MAP were derived by using a geochemical aqueous model Program, PHREEQC 2.11; the effects of the solution conditions were evaluated using thermodynamic theories. The concentrations of P and Mg in the tested solutions were 10-600 mg l(-1) and 24-720 mg l(-1), respectively, the molar ratios of N/P and pH values of the solutions varied in the ranges of 1-40 and 6.0-12.0, respectively. The temperature of all the tests was set at 25 degrees C. The test results show that the SI value of MAP is the logarithmic functions of the concentrations of P, ammonium-N and Mg, and increases with the increase of the concentration of each element. The SI value of MAP is a polynomial function of pH value of the solution, and the optimum pH value for the crystallization of MAP is 9.0 but increases slightly with the increase of the N/P. Moreover, the SI value of MAP is a power law function of the ionic strength of solutions but decreases with its increase. The adjustment of the Mg concentration and the control of solution pH are two effective methods for the control of the crystallization of MAP. The results obtained from the research can be used to guide the design and control of MAP crystallization process for the removal and recovery of P.  相似文献   

16.
Environmental Science and Pollution Research - Petroleum, coal, and natural gas reservoir were depleting continuously due to an increase in industrialization, which enforced study to identify...  相似文献   

17.
Environmental Science and Pollution Research - Increasing crop yields and ensuring food security is a major global challenge. In order to increase crop production, chemical fertilizers and...  相似文献   

18.
Flow direction reversal (FDR) was proposed as a novel method to increase net water production (NWP) during cross-flow ultrafiltration. The design of the pilot-plant study allowed measurement of specific flux recovery after each chemically assisted backwash (BW) combined with FDR and after each FDR at the midpoint of each BW/FDR cycle. The percent recovery of specific flux was higher following FDR (55%) than combined BW and FDR (53%) at lower chemical dosages; however, the percent increase in specific flux recovery by FDR was much lower (20%) when the chemical dose was doubled. A mathematical model was developed to predict the NWP achieved by any combination ofBW/ FDR and FDR frequency. For example, the advantage of introducing FDR was demonstrated at the lower chlorine dose, whereby the percent increase in NWP by alternating 15-minute intervals of BW/FDR with FDR over BW/ FDR alone was 10% for 30-minute BW/FDR intervals and 2% for 15-minute BW/FDR intervals.  相似文献   

19.
Livestock production and the use of synthetic fertilizer are responsible for about half of the global emission of NH3. Depending on the animal category between 10 and 36% of the N in animal excreta is lost as NH3. The current annual NH3 emission in developing countries of 15 million ton N accounts for of the global emission from animal excreta. In addition, 7.2 million tons NH3N of synthetic N fertilizers are lost as NH3 in developing countries. This is 80% of the global NH3 emission from synthetic fertilizer's use. Along with human population increase and economic growth, livestock production in developing countries may even increase by a factor of 3 between now and 2025. The net result of rapid increase of livestock production combined with higher efficiency is an increase in NH3 emissions of only 60% from 15 to 24 million tons NH3N between 1990 and 2025 in developing countries. Livestock production is an important consumer of feedstuffs, mainly cereals, thereby inducing additional demand for synthetic fertilizers. Despite the projected major increase of synthetic fertilizer use from 42 to 106 million ton N between 1990 and 2025, the NH3 loss in developing countries may decrease if a shift towards other fertilizer types, that are less vulnerable to NH3 volatilization, is realized. According to the scenario, the total emission of NH3 associated with food production in developing countries will increase from 22 to 30 million ton N yr−1 between 1990 and 2025. Although the NH3 emission increases more slowly than food production, in particular, animal production may show geographic concentration in certain regions, which may lead to high local emission densities and associated environmental problems.  相似文献   

20.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions—part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physical or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号