首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
Weldon Spring is consistently enriched in18O relative to other karst springs in east-central Missouri and western Illinois, suggesting an evaporated source component. Regional potentiometric head maps of the shallow aquifer suggest that Prairie Lake, an artificial lake built between 1954 and 1982, could represent this component. Isotopic, biological and chemical tracing of the spring conclusively verify the hypothesis that this lake has impacted Weldon Spring. Mixing calculations indicate that Weldon Spring is now comprised of approximately 80% lake water and 20% groundwater. Recent measurements indicate that the discharge rate of the spring is now approximately 10 times the rate prior to the construction of the lake, confirming the augmentation of flow by a new source. Analysis of the isotopic trends indicates that the subsurface travel time is short, and suggests that the conduits connecting the lake and the spring may be progressively enlarging.  相似文献   

2.
While water sources that sustain many of the springs in the Mojave Desert have been poorly understood, the desert ecosystem can be highly dependent on such resources. This evaluation updates the water resource forensics of Bonanza Spring, the largest spring in the southeastern Mojave Desert. The source of spring flow at Bonanza Spring was evaluated through an integration of published geologic maps, measured groundwater levels, water quality chemistry, and isotope data compiled from both published sources and new samples collected for water chemistry and isotopic composition. The results indicate that Bonanza Spring has a regional water source, in hydraulic communication with basin fill aquifer systems. Neighboring Lower Bonanza Spring appears to primarily be a downstream manifestation of surfacing water originally discharged from the Bonanza Spring source. Whereas other springs in the area, Hummingbird, Chuckwalla, and Teresa Springs, each appear to be locally sourced as “perched” springs. These conclusions have important implications for managing activities that have the potential to impact the desert ecosystem.  相似文献   

3.
Hexachlorocyclohexane (HCH) concentrations in sediments and sediment trap fluxes of particulate organic carbon and HCHs were measured bi-weekly from March 31 to October 18, 2006 in an urban eutrophic lake in Tianjin, China, in order to investigate sedimentation and seasonal variation of HCHs in sediments. HCH concentrations (dry weight basis) ranged from 2.2 to 20.2 ng/g (mean 7.7 ng/g) in surface sediments and from 26.6 to 972.7 ng/g (mean 187.0 ng/g) in settling particles, respectively. A clear seasonal variation in HCH sedimentation and HCH concentrations in sediments was observed. The maximal HCH deposition occurred following a spring phytoplankton bloom. The average flux of HCHs to sediment was approximately 21-fold higher in April to mid-June as compared to late June to October. This was attributed to the high vertical fluxes at the end of the spring phytoplankton bloom. The maximum values of HCH concentrations in sediments were observed in mid-June to late July. Concentrations of HCHs in sediments from the eutrophic lake were well-correlated with organic carbon contents in sediments. The annual sediment trap flux of HCHs in the eutrophic lake, which was estimated using data obtained in the eutrophic lake, was 117 μ g/m2 yr, about 72% of which was attributed to the sedimentation corresponding to spring bloom phytoplankton deposition in late May to mid-June. The high sediment trap flux of HCHs in the eutrophic lake was related to serious local contamination.  相似文献   

4.
Hexachlorocyclohexane (HCH) concentrations in sediments and sediment trap fluxes of particulate organic carbon and HCHs were measured bi-weekly from March 31 to October 18, 2006 in an urban eutrophic lake in Tianjin, China, in order to investigate sedimentation and seasonal variation of HCHs in sediments. HCH concentrations (dry weight basis) ranged from 2.2 to 20.2 ng/g (mean 7.7 ng/g) in surface sediments and from 26.6 to 972.7 ng/g (mean 187.0 ng/g) in settling particles, respectively. A clear seasonal variation in HCH sedimentation and HCH concentrations in sediments was observed. The maximal HCH deposition occurred following a spring phytoplankton bloom. The average flux of HCHs to sediment was approximately 21-fold higher in April to mid-June as compared to late June to October. This was attributed to the high vertical fluxes at the end of the spring phytoplankton bloom. The maximum values of HCH concentrations in sediments were observed in mid-June to late July. Concentrations of HCHs in sediments from the eutrophic lake were well-correlated with organic carbon contents in sediments. The annual sediment trap flux of HCHs in the eutrophic lake, which was estimated using data obtained in the eutrophic lake, was 117 microg/m2 yr, about 72% of which was attributed to the sedimentation corresponding to spring bloom phytoplankton deposition in late May to mid-June. The high sediment trap flux of HCHs in the eutrophic lake was related to serious local contamination.  相似文献   

5.
Levels of acidic deposition have declined in Galloway over the last two decades. At the Round Loch of Glenhead this has led to a slight recovery from lake acidification, lake water pH rose by approximately 0.2 units between 1978 and 1989. The diatom flora of the lake has responded to this recovery and a clear floristic reversal dating to the late 1970s is apparent in the sediment cores studied. The detection of this reversibility trend, however, is dependent on the accumulation rate of individual cores. The trend could be detected only in cores with accumulation rates greater than 0.7 mm year(-1). It is also argued that sediment mixing has led to some loss of resolution of the sedimentary record.  相似文献   

6.
More than 10 Asian dust storms occurring in Spring 2000 were found to transport dust long distances, with some fallout reaching as far as Taiwan. An air quality data set from Taiwan clearly shows that long-range transport of yellow-sand results in air quality in Taiwan, which is categorized as “Unhealthy” or “Very Unhealthy”. Backward trajectory analysis indicates that, for air parcels that arrived over Taiwan on 28 April, two or three days are required for transport from source regions, such as Inner Mongolia, a territory that is becoming a desert as a result of over-use and destruction of vegetation cover by human occupants. Furthermore, a 3-D long-range transport model for yellow sand, with an advanced size-dependent deflation module and driven by the NCAR/Penn State Fifth-Generation Mesoscale Model (MM5), is used to identify the long-range transport of yellow sand to Taiwan in April. Comparisons between observations and model calculations indicate that the model is able to reproduce some key features of the long-range transport. Transport of yellow sand to Taiwan is found to occur most easily when dust storms occurring in north China are accompanied by a high-pressure system located over the west of Japan. The high concentrations of yellow sand transported over Taiwan are usually between 500 and 1500 m high, not at the surface.  相似文献   

7.
Multivariate statistical techniques were used to investigate source apportionment and source/sink relationships for polycyclic aromatic hydrocarbons (PAHs) in the urban and adjacent coastal atmosphere of Chicago/Lake Michigan in 1994–1995. The PAH signatures for the atmospheric particle phase, surface water particle phase and sediments indicate that atmospheric deposition is the major source of PAHs to the sediments and water column particulate phase of Lake Michigan. The PAH signature for the atmospheric gas phase and water dissolved phase indicate an intimate linkage between the lake and its overlying atmosphere. A modified factor analysis-multiple regression model was successfully applied to the source apportionment of atmospheric PAHs (gas+particle). Coal combustion accounted for 48±5% of the ΣPAH concentration in both the urban and adjacent coastal atmosphere, natural gas combustion accounted for 26±2%, coke ovens accounted for 14±3%, and vehicle emissions (gas+diesel) accounted for 9±4%. Each is an identified source category for the region. These results are consistent with the mix of fossil fuel combustion sources and ratios of indicator PAHs.  相似文献   

8.
Salvetti R  Azzellino A  Vismara R 《Chemosphere》2006,65(11):2168-2177
The source apportionment of the annual nutrient load carried by the Po river to the Adriatic sea has been studied.

An integrated modelling approach was applied to the Lombardy plain area, which covers about 34% of the Po river watershed area and accounts for about 50% of the point sources’ loads carried by the river. To extract all the information available from direct instream measurements, two different modelling tools were alternatively used. The source apportionment was investigated considering both dry and wet weather scenarios. In order to quantify the apportionment in dry-weather conditions, the Lombardy portion of the Po river basin was modelled by using the US-EPA QUAL2E model. Such a simulation allowed to assess a significant contribution (about 50% of the total dry-weather load) of a not rain-driven diffuse pollution component (i.e. groundwater, springs, lake emissaries). Moreover, to estimate the rain-driven surface runoff contribution to the instream total load, the Lombardy plain area was also modelled by means of the US-DA SWAT model. SWAT results indicate a runoff contribution to the Po river instream total load of about 10 000 t N yr−1 and 1300 t P yr−1 (i.e. approximately the 10–20% of the total annual Lombardy nutrient load). At the event scale (i.e. the single rainstorm event) the runoff contribution may rise up to 30–80% of the total instream load. Finally, the total annual nitrogen load at the Po basin closure was estimated for the period 1985–2001. Out of a total annual load of 140 000 t N yr−1, Lombardy accounts for 43% (point plus diffuse sources). The rain-driven diffuse sources constitute the 20% of the overall total load, the point sources account for 40%, whereas the remaining 40% is mainly constituted by “dry-weather diffuse sources” (i.e. groundwater, springs, lake emissaries).  相似文献   


9.
Keller W  Heneberry JH  Dixit SS 《Ambio》2003,32(3):183-189
Lakes in Killarney Park near Sudbury, Ontario, Canada, have shown dramatic water quality changes including general increases in pH and alkalinity, and decreases in SO4(2-), base cations and metals. While some lakes have recovered to pH > 6.0, many are still highly acidic despite decades of improvement. Very high historical S deposition related to emissions from the Sudbury metal smelters dominated the acidification process in this region. However, since the implementation of substantial S emission controls (90%) at the smelters, the Sudbury emissions are no longer the major source of S deposition in the Sudbury area. Wet deposition of SO4(2-) and SO4(2-) concentrations in lakewaters at Killarney now approach values in the Dorset, Ontario, area, about 200 km from Sudbury. This suggests that the S deposition to the Killarney area is now primarily from long-range transport, not from local sources. Studies of Killarney lakes are revealing the complex nature of the chemical recovery process. As lake acidity decreases, other changes including decreased Ca2+ concentrations, increased transparency, and altered thermal regimes may potentially affect some of these ecosystems. It is clear that continuing assessments of the recovery of Killarney lakes, within a multiple-stressor framework, are needed.  相似文献   

10.
Up to now, carbon gas fluxes from urban lakes in the boreal zone have seldom been studied. In summer 2005 we investigated fluxes from an urban boreal lake basin in southern Finland with long history of eutrophication and anoxia. Hypolimnetic CO2 and CH4 concentrations were high compared to other boreal lakes. During the open-water period, the lake basin acted as a source of CO2 and CH4 with fluxes of 2.10 mol m−2 and 0.04 mol m−2, respectively. Despite the high oxidation rate (83%), CH4 flux was higher than in other lakes and CH4 contributed 60% to Global Warming Potential. The ratio of carbon emission to accumulation was 4, i.e. emissions were an important route for carbon departure but less so than in rural lakes. Since the lake oxygen conditions affected nutrient availability, there was a positive feedback from hypolimnion to carbon uptake, which was reflected in gas concentrations.  相似文献   

11.
East Lake resides in the urban area of Wuhan City and is the largest urban lake in China. The concentrations of 16 organochlorine pesticides (OCPs) were analyzed in 108 surface water samples collected from the East Lake. The total concentrations of OCPs ranged from not detected to 120 ng L?1 with predominance of δ-HCH, heptachlor, and α-HCH. The mean values of HCHs and DDTs were 7.40 and 5.70 ng L?1, respectively, accounting for 40 and 31 % of the total OCPs. For the five lakelets in East Lake, Houhu Lake exhibited the highest concentrations of HCHs, DDTs, and total OCPs, which has been used actively for fisheries and surrounded by suburban rural areas and farmlands. Historical lindane or technical HCH input was probably the source of HCH, while technical DDTs might be the source of DDT in the East Lake. The ratio between heptachlor and its metabolic products indicated recent input of heptachlor. Although the combining ecological risks for all aquatic species in the East Lake calculated by species sensitivity distribution reached approximately 10?5, the OCPs in the East Lake had slight effects on aquatic organisms. The carcinogenic risks and non-carcinogenic hazard indices of DDTs and HCHs indicated that water in the East Lake was not suitable as water sources for human. However, the results indicated the water quality was safe for people to swim in the urban lake.  相似文献   

12.
南宁市大气颗粒物TSP、PM10、PM2.5污染水平研究   总被引:15,自引:1,他引:14  
2002年在南宁市的5个典型城市功能区内,共采集了125个大气样品(按季节分别采集),初步调查了大气中颗粒物TSP、PM10、PM2.5的污染状况。结果表明,南宁市TSP、PM10、PM2.5的污染很严重,超标率分别为67.5%、82.5%、92.5%,对人体健康危害更大的PM2.5占到了PM10的63.5%左右。重污染区PM2.5的浓度超过轻污染区近一倍。  相似文献   

13.
Lindeström L 《Ambio》2001,30(8):538-544
The past effluents of mercury (Hg) into Lake V?nern were considerable. The consequences of, and recovery from these have been monitored through continuous measurements of mercury in sediment and fish. Mercury levels in lake sediments in the vicinity of the main source of mercury, a chloralkali plant on the northern shore, have only decreased by slightly more than a half since the mid-1970s, despite a radical decrease in effluents from the source, already during the 1960s. The mercury levels in pike (Esox lucius) have decreased to a similar extent during this time period. They are now about 30% higher in the worst affected parts of the lake compared to the least affected parts. Lower levels have been measured in perch (Perca fluviatilis) and salmonoid fish in the lake. Despite the increased presence of mercury in the sediment of Lake V?nern, the mercury levels in the fish of the lake are relatively low compared to fish in lakes situated in the same region, but not affected by any local mercury effluents. As calculated, the total fish biomass of L. V?nern holds less than 1000th of the amount of mercury contained in the upper, biologically active layers of the bottom sediment of the lake. This demonstrates the potential influence of various environmental factors and motivates continued monitoring of mercury levels in the lake in the future.  相似文献   

14.
Depletion of Si in transported dust has been recognized for many years. It can be used to distinguish between transported and local dust in cities, although it rarely has been. Here we use the variations of the Si/Al ratio in 15 months of continuous PM2.5 samples at Beijing (northern China) and Chongqing (southwestern China) to reveal the seasonal patterns of their dust sources. For both cities, peaks of concentration for Si and Al in PM2.5 corresponded with minima of Si/Al, and could often be linked to pulsed air flow from deserts to the northwest. With significant depletion (up to 80%) and homogeneous distribution at urban and rural sites, Si/Al showed a clear seasonal evolution, which decreased from spring to summer, increased from fall to winter, and collapsed during Chinese Spring Festival, indicating the dominance of transported dust, local fugitive dust and firework influence, respectively. The low ratios implied that desert dust is a common source during spring at Chongqing, whereas its presence during cold season at Beijing was also more frequent than expected. Failing to recognize the depletion of Si may lead to an overestimate of desert dust by 15%–65% when using the average abundance of Al in crust (6%–8%), as in previous studies. The difference in Si/Al ratio between local and transported dust implies that >60% of the dust at Beijing came from outside the city during the springs of 2004–2006. This result can help resolve the contradictory findings on this topic that have been presented earlier.  相似文献   

15.
Long Ye  Hong You  Jie Yao  Xi Kang  Lu Tang 《Chemosphere》2013,90(10):2493-2498
Seasonal variation and influencing factors of perchlorate in snow, surface soil, rain, surface water, groundwater and corn were studied. Seven hundreds and seventy samples were collected in different periods in Harbin and its vicinity, China. Perchlorate concentrations were analyzed by ion chromatography–electrospray mass spectrometry. Results indicate that fireworks and firecrackers display from the Spring Festival to the Lantern Festival (February 2, 2011–February 17, 2011) can result in the occurrence of perchlorate in surface soil and snow. Perchlorate distribution is affected by wind direction in winter. Melting snow which contained perchlorate can dissolve perchlorate in surface soil, and then perchlorate can percolate into groundwater so that perchlorate concentrations in groundwater increased in spring. Perchlorate concentrations in groundwater and surface water decrease after rainy season in summer. Groundwater samples collected in the floodplain areas of the Songhua River and the Ashi River contained higher perchlorate concentrations than that far away with the rivers. The corns have the ability to accumulate perchlorate.  相似文献   

16.
A proposed tracer diffusion test for the Exploratory Shaft Facility at Yucca Mountain, NV, is modeled. For the proposed test, a solution containing conservative tracers will be introduced into a borehole in the geologic medium of interest. The tracers will diffuse and advect from the saturated source region into the unsaturated matrix in the surrounding tuff. After some time, the borehole is to be overcored, and tracer concentrations in the fluid will be measured in the core as a function of distance from emplacement. The data will be used to evaluate diffusive behavior and to derive effective diffusion coefficients for the tracers in the specific tuff. Numerical simulations are used to study the effects of effective diffusion coefficient, porosity, saturation, and fracturing on tracer transport. Results are reported for numerical simulations of tests in the Topopah Spring Member and the Tuff of Calico Hills, which have significantly different porosities and saturations. The simulations make the following predictions: The spread of tracer during the test will be sensitive to the effective diffusion coefficient of the tracer. Tracer will diffuse farther in the Topopah Spring Member than in the Tuff of Calico Hills because of the former's lower porosity and saturation. Tracer transport by advection into the Topopah Spring Member will be greater than that into the Tuff of Calico Hills because of capillary effects. While advection will be a significant mechanism for tracer penetration into the Topopah Spring tuff, it will be less significant for tracer penetration into the Calico Hills tuff. The proximity of a single vertical fracture to the source region determines its effects on tracer transport, especially if the fracture diverts fluid flowing from the source region into the matrix.  相似文献   

17.
Lake Van in Turkey is the world's largest soda lake (607 km(3)). The lake's catchment area is estimated to be ~12,500 km(2), and the terrestrial input is carried through eolian, riverine, snowmelt and anthropogenic paths. Extent and seasonality of the terrestrial inputs to the lake have not been studied, but it is essential to evaluate its environmental status and to assess the use of environmental proxies to estimate the lake's response to climate changes. This study aims to measure seasonal changes in terrestrial input of natural and anthropogenic origin as recorded by the fluxes of pollen and biomarkers of soil bacteria and vascular or higher plants, as well as petrogenic biomarkers in monthly resolved sediment traps from August 2006 to July 2007. Fluxes of pollen, soil and higher plant biomarkers seem to be related to precipitation and snowmelt in autumn and spring. In addition, dust storms, which are common during the summer months, may have resulted in long-distance transport. Anthropogenic biomarker fluxes indicate year-round petrogenic contamination although some mature biomarker fluxes are higher in summer and in late winter-spring. The relative changes between petrogenic markers indicate variations in the pollutant sources.  相似文献   

18.
Methyl-mercury (CH3Hg+) production was studied in freshwaters from lake Moreno, an ultraoligotrophic system belonging to Northern Patagonia. Hg2+ labelled with high specific activity 197Hg was spiked to water samples in concentrations of 10 ng l(-1), and incubated in laboratory for 3d time trends under different conditions. Experimental water was sampled daily to evaluate CH3(197)Hg+ production. Lake water used in the experiments was sampled just below the upper limit of the metalimnion ( approximately 30 m depth), where maximum values of chlorophyll a have been measured previously. Sampling was performed in late autumn, when the plankton fraction <50 microm exhibited mercury concentrations up to 260 microg g(-1) dry weight. The experiments analysed lake water filtered through 50, 20, and 0.2 microm (filter-sterilized) mesh nets. ASTM grade 1 water was also incubated for control. All the experiments were run in an environmental chamber under controlled temperature and light regime. High Hg2+ conversion to CH3Hg+, up to 50%, was measured in lake water, in a process stimulated by light. CH3Hg+ production was two-fold higher after 3d of incubation with illumination compared to total darkness. Sterile lake water showed conversions up to 30%, while the planktonic components seem to enhance the CH3Hg+ production. Overall, our results provide evidence that lake Moreno waters favour CH3Hg+ production in processes stimulated by light. Although biotic components certainly contribute to enhance mercury methylation, water chemistry plays a key role in this process. We hypothesize that dissolved organic matter, particularly its quality, could be decisive.  相似文献   

19.
The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.  相似文献   

20.
Isotopic measurements of the 34 m3/s discharge from the Fall River Springs of northern California indicate recharge from 50 km upgradient in high elevation regions of Medicine Lake Volcano. Age determinations suggest less than 20-year travel time. Data demonstrate Klamath Basin further north cannot be a recharge source. Mass balance calculations support that annual precipitation on the volcano supplies observed spring discharge, requiring 50%–75% recharge rates. Radiocarbon and δ13C of dissolved inorganic carbon indicate 30%–40% is derived from magmatic CO2. Measured excess 3He is also consistent with the presence of magmatic gas derived from the Quaternary Age Medicine Lake Volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号