首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concern of the toxic effects and bioaccumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls in the environment continues to be a focus of research in persistent organochlorine contaminants. Groups of five adult female S.D. rats were administered by gavage 0, 2.5, 25, 250 or 1000 ng TCDD/kg body weight/day or TCDD in combination with a mixture of PCB congeners (PCBs) at 2 or 20 microg/kg b.w./day for a period of 28 days. Growth suppression, increased absolute and relative liver weights, and decreased thymic weight were observed in either the 1000 ng TCDD group alone, or the groups receiving a mixture of 1000 ng TCDD + 2 microg PCBs. The TCDD induced increases in liver and thymic weights were not altered by co-administration with PCBs, however, growth suppression appeared to be more pronounced in the group receiving 1000 ng TCDD + 2 microg PCBs than with TCDD alone. Treatment with TCDD at 250 ng and 1000 ng/kg resulted in a significant increase in hepatic microsomal methoxy resorufin-O-demethylase and ethoxy resorufin-O-deethylase activities which were antagonized by co-administration with PCBs. Similarly, effects of 250 ng TCDD on serum cholesterol and liver UDP glucuronosyl transferase activity and ascorbic acid were significantly reduced by co-administration with 20 microg PCBs. Other biochemical effects elicited by treatment with 1000 ng TCDD, but not affected by co-administration with PCBs include the following: increased serum albumin, decreased liver vitamin A, and increased kidney vitamin A and liver microsomal glutathione-S-transferase activity. While decreased hemoglobin, platelet, packed cell volume and red cell indices were observed in TCDD treated rats, no interactive effects were seen. The above results indicate that the mixture effects of PCBs and TCDD may be additive or antagonistic depending on the dose level and endpoints measured. For the purpose of predicting mixture effects, knowledge of mechanisms of action and toxicokinetics is required.  相似文献   

2.
BACKGROUND: From 1961-1971, The Air Development Test Center, Eglin Air Force Base (AFB), Florida, developed, tested, and calibrated the aerial spray systems used in support of Operation RANCH HAND and the US Army Chemical Corps in Vietnam. Twenty major test and evaluation projects of aerial spray equipment were conducted on four fully instrumented test grids, each uniquely arrayed to match the needs of fixed-wing, helicopter, or jet aircraft. Each of the grids was established within the boundary of Test Area 52A of the Eglin Reservation. METHODS: The tests, conducted under climatic and environmental conditions similar to those in Vietnam, included the use of the military herbicides (Agents) Orange, Purple, White, and Blue. Approximately 75,000 kg of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 76,000 kg of 2,4-dichlorophenoxyacetic acid (2,4-D) were aerially disseminated on an area of less than 3 km2 during the period 1962-1970. Data from the analysis of archived samples suggested that an estimated 3.1 kg of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), present as a contaminant, were aerially released in the test area. Because most of the vegetation had been removed before establishing the test site in 1961, there was an opportunity to follow ground-based residues independent of canopy interception, and the resulting high solar exposure of initial residues. Studies of the soils, fauna, flora, and aquatic ecosystems of the test grids and associated perimeters of Test Area C-52A (an area totally more than 8 km2) were initiated in 1969 and concluded in 1984. RESULTS AND DISCUSSION: Data from soil samples collected from 1974 through 1984 suggested that less than one percent of the TCDD that was present in soil when sampling began persisted through the ten-year period of sampling. More than 340 species of organisms were observed and identified within the test area. More than 300 biological samples were analyzed for TCDD and detectable residues were found in 16 of 45 species examined. Examination of the ecological niches of the species containing TCDD residues suggested each was in close contact with contaminated soil. Indepth field studies, including anatomical, histological and ultrastructural examinations, spanning more than 50 generations of the Beachmouse, Peromyscus polionotus, demonstrated that continual exposure to soil concentrations of 0.1 to 1.5 parts-per-billion (ng/g) of TCDD, had minimal effects upon the health and reproduction of this species. CONCLUSIONS: Since Agent Orange with its associated TCDD contaminant was aerially disseminated on the test grids, Test Area C-52A provided a 'field laboratory' for what may have happened in Vietnam, had there been no intercepting forest cover. However, in Vietnam a 'typical' mission would have disseminated 14.8 kg of 2,4,5-T/ha, most of which was intercepted by the forest canopy, versus the 876 kg 2,4,5-T/ha on the test grid at Eglin. Moreover, each hectare on the Eglin test grid received at least 1,300 times more TCDD than a hectare sprayed with Agent Orange in Vietnam. The disappearance or persistence of TCDD is dependent upon how it enters the ecosystem. Spray equipment test and evaluations missions at Eglin were generally scheduled and conducted with environmental conditions that were optimal for spray operations. This suggests that conditions favorable for dissemination of herbicide were the same conditions favorable for photodegradation of TCDD. It was likely that 99 percent of the TCDD never persisted beyond the day of application. No long-term adverse ecological effects were documented in these studies despite the massive quantities of herbicides and TCDD that were applied to the site. Reviews by the US Environmental Protection Agency and the National Academy of Sciences' Institute of Medicine did not address the fate of Agent Orange and TCDD as described in these studies from Eglin AFB, Florida.  相似文献   

3.
Potential human and wildlife exposures to TCDD in landspread pulp and paper mill sludge in the State of Maine were evaluated by means of a human health and an ecological risk assessment methodology. The highest historical concentrations of TCDD reported for these sludges do not present a risk to American woodcock, selected as an indicator species for this analysis. Concentrations of TCDD as high as 50 ppt in soil are not likely to produce adverse effects in the embryonic/hatchling stage of the woodcock. This soil concentration of TCDD does not present a significant risk to sportsmen and their families that may consume birds which inhabit these sites.  相似文献   

4.
A survey of contamination of fish from major watersheds in the United States by 2,3,7,8-TCDD has been conducted by the U.S. EPA. Bottom feeding and predator fish were collected at 90 statistically selected and 305 regionally selected sites and analyzed by GC/MS. It was found that 19% of the statistically sampled sites and 31% of the regionally selected sites were contaminated at or above a minimum level of detection varying from 0.5 to 2.0 pg/g. Ten percent of all samples were contaminated at levels greater than 5.0 pg/g. It was also observed that a subset of samples collected at sites near discharge from pulp/paper manufacture (N=28) had a higher frequency of TCDD contamination above 5.0 pg/g (38%). This subset of samples also contained the sample of the greatest level of TCDD contamination (85 pg/g).  相似文献   

5.
In the isolated Aluoi Valley of central Viet Nam, very high levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were measured in soil, fish fat, duck fat, pooled human blood and breast milk samples collected from A So village between 1996 and 1999. The village was situated on a former military base occupied by US Special Forces between 1963 and 1966. TCDD was a contaminant of the herbicide "Agent Orange", aerially sprayed in the valley between 1965 and 1970, and stored at the A So base. Measured levels were lower near the sites of two other former US bases in the valley which had been occupied for shorter periods of time. In areas where Agent Orange had been applied by low-flying aircraft, levels of TCDD in soil, food and human samples were elevated, but lower than those near the three former US bases. We confirm the apparent food chain transfer of TCDD from contaminated soil to cultured fish pond sediments to fish and duck tissues, then to humans as measured in whole blood and breast milk. We theorize that the Aluoi Valley is a microcosm of southern Viet Nam, where numerous reservoirs of TCDD exist in the soil of former military installations south of the former demilitarized zone. Large quantities of Agent Orange were stored at many sites, used in ground and aerial applications, and spilled. TCDD, through various forms of soil disturbance, can be mobilized from these reservoirs after decades below the surface, and subsequently, introduced into the human food chain.  相似文献   

6.
PCDD/Fs are hydrophobic organic substances and strongly sorbing to soil particles. Once adsorbed to soil particles they are believed to be virtually immobile. However, research in the last decades confirmed that strong sorbing contaminants may reach the groundwater via colloid-facilitated transport. This pathway has not been investigated before in Vietnam. Ma Da area, 100 km north of Ho Chi Minh City, was repeatedly sprayed during the Vietnam War (1962–1971) with herbicides like Agent Orange containing, beside others, the teratogenic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 11 surface soil samples and 12 water samples were collected in Ma Da area for analysis of PCDD/Fs in solids. Soil TCDD concentrations ranged from 1–41 ppt with a mean of 8.8 ppt and a mean I-TEQ of 9.7 ppt. Two surface water samples showed colloid bound TCDD (7 and 19 ppt). Groundwater samples showed elevated colloid bound PCDD concentrations (mean 770 ng/kg), mainly octachlorodibenzo-p-dioxin. Groundwater colloids separated by filtration did not show any TCDD. The results support that TCDD/Fs can be relocated from the top soil to the groundwater by colloidal pathway. They did not provide evidence that the dioxins bound to groundwater colloids are leftovers from the Second Indochinese War. However, this study reinforces that the colloidal transport pathway has to be included investigating the relocation of strong sorbing organic contaminants.  相似文献   

7.

In order to investigate the distribution, transfer, and human health risks of polycyclic aromatic hydrocarbons (PAHs) in the soil-wheat systems, soil samples from 20 farmlands and corresponding wheat tissues were collected from selected regions of Henan Province in June 2013 and were analyzed to estimate the concentration of PAHs. The total concentrations of 15 PAHs (∑15 PAHs) in soils from Henan Province varied from 6.91 to 72.4 ng/g. Moreover, two-ring to three-ring PAHs (1.59–29.1 ng/g) were the major species in soils, occupying 56.2% of total PAHs. Principal component analysis (PCA)-multiple linear regression (MLR) revealed that fossil fuel burning dominated the input of PAHs in agricultural soils of Henan Province. The range of ∑15 PAHs concentrations in wheat tissues was 13.9–50.9 ng/g, which decreased along the root-straw-grain. Positive correlation among PAHs of soil and wheat tissues showed that PAHs in wheat mainly came from soil and then migrated along root-straw-grain. Moreover, PAHs were accumulated highest in root and lowest in grain. Two-ring to three-ring PAHs were easier to transfer from soil to wheat than five-ring to six-ring PAHs. Consumption of wheat grain created potential risk of cancer in Henan Province.

  相似文献   

8.
A spatial temporal assessment of pollution from PCBs in China   总被引:40,自引:0,他引:40  
Xing Y  Lu Y  Dawson RW  Shi Y  Zhang H  Wang T  Liu W  Ren H 《Chemosphere》2005,60(6):731-739
This research represents an assessment of the current state of pollution from polychlorinated biphenyls (PCBs) in China. Various environmental media including sediment, water, organism and soil were analyzed and the spatial character of PCB pollution in each environmental medium was determined. On a national basis, PCB levels in all environmental media were relatively low, with little evidence of major contamination in China's main regions and rivers. However, there were some locations with high PCB concentrations. Sediments in Pearl River (83.1 ng/g) and its estuary (58.9 ng/g), Dalian Bay (58.1 ng/g) and Songhua River (36.8 ng/g) had relatively high level of PCBs. There were also some areas, which were mainly the industrial pollution sites or PCB equipment storage locations, remained seriously polluted with the highest PCB residue level of 150,000 ng/g. In addition, Minjiang Estuary (985.2 ng/g) and Taihu Lake (631 ng/g) had high levels of water pollution, while Pearl Estuary (635.7 ng/g) and Jiaozhou Bay (273.3 ng/g) had relatively high PCB levels in organisms. PCB pollution in soil was limited to a few special pollution areas with the highest PCB level of 4.5448 x 10(6) ng/g. Point source pollution was the common pattern of contamination, influenced primarily by local geographic, economic and historical factors. Analysis of PCB concentrations from the 1980s to 1990s shows an increasing trend, possibly due to the improper disposal of and leakage from PCB containers, chemical transfers, and the general rise of industrial pollution.  相似文献   

9.
Mathematical models and field data were used to estimate the airborne concentrations of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) vapor and particulates which could originate from soil containing 100 ppb TCDD. The model of Jury et al. (1983) and the box approach were used to predict the concentration of TCDD vapor from soil. The daily soil temperature was assumed to vary between 20 degrees C and 40 degrees C for six months of the year to account for diurnal warming and cooling of the soil. The depth of contamination was 50 mm. The model predicted average vapor flux rate for TCDD from soil for this temperature profile was 1.5 x 10(-14) mg/sec-cm2. The upper-bound estimates of the TCDD vapor concentration on-site at 40 degrees C and 20 degrees C were 2.5 pg/m3 and 1.8 pg/m3, respectively. Using a recently proposed unit risk value (URV) of 2.9 x 10(-6) (pg/m3)-1 [slope factor = 1.0 x 10(-14) (mg/kg-day)-1], the maximum plausible cancer risk is about 1 x 10(-5). If one accepts the EPA URV of 3.3 x 10(-5) (pg/m3)-1 (slope factor = 1.2 x 10(-13) (mg/kg-day)-1), then the risk is no greater than 1 x 10(4). A maximum TCDD vapor concentration of 0.21 pg/m3 was predicted 100 meters downwind (for summer days). The on-site concentration of TCDD in suspended particulate was estimated to be 1.4 pg/m3 (based on a TSP level of 0.07 mg/m3 from site soil). For persons exposed to vapors and particulates about 100 meters off-site, the exposure was about 10-fold less.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Concentrations of selected organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are reported in air and surface soil in an extensive spatial survey across Azerbaijan, a country bordering the Caspian Sea with a history of OCP production and extensive use. Polyurethane foam disc passive air samplers (PAS) were deployed during October-November 2008 with soil samples collected in July 2009. Levels of Σ(7)PCB in ambient air were generally low (mean of 0.046 ng m(-3), n?=?13) and comparable to concentrations reported in countries within Eastern Europe and similar to or lower than concentrations reported in urban air in the UK and other western countries. Surprisingly, PCB concentrations in rural/background soil fell below the method detection limits at most sites, although concentrations were 0.209 and 0.071 ng Σ(7)PCB g(-1) dry weight (dw) for two urban sites, again comparable to PCB levels measured at background sites in Europe. Levels of α-HCH, β-HCH, γ-HCH and p,p'-DDT/E were elevated in ambient air across Azerbaijan in comparison to PAS-derived concentrations reported elsewhere, with concentrations of α-HCH in air ranging from 0.085 to 2.699 ng m(-3) and p,p'-DDE, 0.037-2.290 ng m(-3). High concentrations of OCPs occurred at several of the urban sites and at sites in proximity to old pesticide storage facilities with concentrations in soil >0.1 μg g(-1) dw for p,p'-DDE and p,p'-DDT at several sites. The ratio of p,p'-DDT/p,p'-DDE was close to unity in the soil at these sites, but elsewhere, the ratio was <1, indicating a weathered DDT pattern, which was also reflected in the air at all sites. A fugacity approach revealed the strong likelihood of net soil-to-air transfer at the majority of sites for all OCPs. The calculated annual fluxes or loading to the atmosphere from a rural/agricultural area (representing land as vineyards and cotton cultivation) were estimated to be on the order of ≈10-100 kg year(-1) for the HCH isomers (including the β -isomer) and p,p'-DDE. The high levels of OCPs in soils, particularly in the vicinity of obsolete-pesticide storage facilities and at select urban sites are of concern and warrant regular monitoring activities and the development of containment or mitigation strategies.  相似文献   

11.
Plastic waste is a source of organic contaminants such as hexabromocyclododecanes (HBCDs). HBCDs have been found to cause developmental and reproductive toxicity; it is important to investigate the occurrence and metabolization of HBCDs in the soil environments with plastic waste contamination. This work analyzed HBCDs and their metabolites in soil and plant samples collected from Xinle and Dingzhou—the major plastic waste recycling centers in North China. Results showed that total HBCD concentrations in soils followed the order: plastic waste treatment site (11.0–624 ng/g) > roadside (2.96–85.4 ng/g) ≥ farmland (8.69–55.5 ng/g). HBCDs were detected in all the plant samples with total concentrations ranging from 3.47 to 23.4 ng/g. γ-HBCD was the dominant congener in soils, while α-HBCD was preferentially accumulated in plants. Compositions of HBCD isomers in soils and plants were significantly different (P < 0.05) among sampling sites and among plant species. HBCDs in farmland soil and all plant samples exhibited high enantio-selectivity based on the enantiomeric fractions (EFs). Furthermore, metabolites of pentabromocyclododecenes (PBCDEs) were frequently identified in soils, and mono-OH-HBCDs were the most common ones in plants. This study for the first time provides evidences of HBCD contamination in the soil-plant system caused by plastic waste, their stereo-selectivity, and metabolization behavior, improving our understanding of the environmental behavior and fate of HBCDs.  相似文献   

12.
Conservative models were used to estimate the airborne concentrations of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) vapor and particulates originating from soil containing 100 ppb TCDD. The upper-bound estimates were 3.25 pg/m3 of airborne TCDD vapor on-site and 0.51 pg/m3 for TCDD vapor 100 meters downwind. The TCDD air concentration on-site due to suspended particulate is estimated to be 1.4 pg/m3, based on a TSP level of 0.07 mg/m3. Assuming 70 years of continuous exposure to these concentrations, the upper-bound cancer risks determined from the Jury model were estimated to be 9.4 × 10−6 to 1.1 × 10−4 and 1.5 × 10−6 to 1.7 × 10−5 for inhalation of on- and off-site vapor, respectively, and 4.1 × 10−6 to 4.6 × 10−5 for dust inhalation. Since few sites have average soil concentrations as high as 100 ppb TCDD, this worst-case analysis indicates that inhalation will rarely, if ever, be a significant route of exposure to TCDD-contaminated soil. Experimental results support this claim and point to much lower risk estimates (8.4 × 10−9 to 9.9 × 10−8), suggesting that the parameters used in the Jury model are likely to overestimate the actual airborne levels of TCDD at contaminated sites.  相似文献   

13.
PCDDs, PCDFs, PCBs and DDE in edible marine species from the Adriatic Sea   总被引:1,自引:0,他引:1  
Edible marine species from several areas of the Adriatic sea were analyzed for their content in persistent organic pollutants (POPs), such as polychlorinated dibenzodioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and pp'-DDE (dichlorodiphenyldichloroethylene), a metabolite of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT). On the whole, PCDD/F contamination levels were low. In general, I-TEQ findings were greater for those species at higher levels in the trophic web (mackerel > red mullet > anchovy). Contamination levels were within 0.23 and 1.07 pg TEQ/g fw (fresh weight) in the aforesaid species, while all remaining species exhibited contamination levels ranging from approximately 0.07 to 0.25 pg TEQ/g fw. Besides, TEQ cumulative findings in species from the northern area were in general greater than those from the central and southern areas. PCB cumulative findings in the samples also revealed a detectable difference in contamination levels in species obtained from the northern, central, and southern sampling sites, between 7.6 and 177, 2.3 and 157, and 4.5 and 94 ng/g fw, respectively. The greatest PCB concentrations were found in mackerel (94-177 ng/g fw). Finally, DDE concentration levels varied from 0.7 to 32.4 ng/g fw. The highest levels of contamination were found in mackerel, red mullet and anchovy (17.7-32.4 ng/g fw, 8.1-9.8 ng/g fw, and 6.4-11.9 ng/g fw, respectively).  相似文献   

14.
A field study of the ecotoxicology of copper to bryophytes   总被引:3,自引:0,他引:3  
The impact of particulate copper, emitted from a copper rod-rolling plant, on the distribution of common grassland bryophytes has been investigated. Several areas of managed grassland, differing in total and water-extractable soil copper content, surrounding the factory were surveyed to establish species composition and distribution of the bryophyte flora. Clear differences emerged in the distribution patterns of the main acrocarpous (upright/tufted growth form) and pleurocarpous (horizontal/spreading growth form) species present, with some species being more or less confined to soils with elevated copper (Pohlia nutans), whilst others were absent from such sites. The distribution of acrocarpous species was not related to increasing soil copper concentrations, whereas pleurocarpous species showed considerable sensitivity. This may not be a simple reflection of sensitivity to copper; ecological factors such as differences in patterns of water and soluble copper uptake between the different growth forms may be significant factors, as may be changes in the vascular plant flora giving rise to differences in population densities of potential competitors between sites. Pleurocarpous species are absent from grassland where total soil copper >550 microg g(-1) dry weight, whilst the less sensitive acrocarpous species occur at total soil copper levels in excess of 2000 microg g(-1) dry weight.  相似文献   

15.
The finding of dieldrin (88 ng/g), DDE (52 ng/g), and heptachlor epoxide (19 ng/g) in earthworms from experimental plots after a single moderate application (9 kg/ha) 45 years earlier attests to the remarkable persistence of these compounds in soil and their continued uptake by soil organisms. Half-lives (with 95 % confidence intervals) in earthworms, estimated from exponential decay equations, were as follows: dieldrin 4.9 (4.3–5.7) years, DDE 5.3 (4.7–6.1) years, and heptachlor epoxide 4.3 (3.8–4.9) years. These half-lives were not significantly different from those estimated after 20 years. Concentration factors (dry weight earthworm tissue/dry weight soil) were initially high and decreased mainly during the first 11 years after application. By the end of the study, average concentration factors were 1.5 (dieldrin), 4.0 (DDE), and 1.8 (heptachlor epoxide), respectively.  相似文献   

16.
Topsoil samples from 56 sites around the Guanting Reservoir, China, were measured for HCH and DDT concentrations. The total soil HCH content (including alpha-, beta-, gamma-, and delta-isomers) in these soil samples ranged from 0 to 7.33 ng x g(-1), with a mean of 0.69 ng x g(-1). These levels were considerably lower than those of the total DDT soil contents (including pp'-DDE, pp'-DDD, op'-DDT, and pp'-DDT), which ranged from 0 to 76.01 ng x g(-1), with a mean of 9.46 ng x g(-1). DDT was also found to be the major pollutant in the soil samples, accounting for approximately 93% of the total organochlorine pesticide (OCP) contents. Several environmental factors including land use, soil texture, soil taxonomy, and microbial biomass were considered to be responsible for the OCP levels observed. The data provide some insight into the effects of environmental conditions such as soil formation, agricultural cultivation, nutrient enrichment, and other anthropogenic activities on the degradation of OCPs in soils. Although the OCP residues currently are below the maximum limits set for use on agricultural land in China, and only rarely would such levels pose significant ecological concern, OCPs are highly persistent in soil and bioaccumulative. The data provided in this study are considered crucial for reservoir remediation, especially since the Guanting Reservoir will serve as one of the main drinking water sources for Beijing in the foreseeable future.  相似文献   

17.
Levels of butyltin (BT) and phenyltin (PT) compounds were determined in sediments and clam Meretrix spp. collected from north and central coastal areas in Vietnam. Concentrations of TBT in sediments ranged from 0.89 to 34 ng g(-1) dry wt and those in clams ranged from 1.4 to 56 ng g(-1) wet wt. The levels of TBT in sediments and clams from Vietnam were within limits reported from other countries. Further, the TBT level in clams was lower than the tolerable average residue level (TARL) estimated based on tolerable daily intake (TDI). Trace amounts of PTs were also found in both sediment and clam samples. In sediments from north and central Vietnam, the concentrations of TBT were highest in the order of Hue (28 ng g(-1) dry wt), Cua Luc (15 ng g(-1) dry wt), Sam Son (6.3 ng g(-1) dry wt), and Tra Co (5.5 ng g(-1) dry wt). Among the clams from north and central Vietnam, the levels of TBT in clams from Cua Luc were dramatically high at 47 ng g(-1) wet wt. TBT formed the principal butyltin species in sediment at all sites studied. The ratios of TBT in sediment were higher among BT compounds at all study sites. Of total BTs, TBT was the dominant species in clams from almost all sites studied. In spatial distribution, TPT showed a pattern similar to TBT, suggesting the use of TPT as an antifouling paint. The partition coefficient between sediment and calms was calculated. The partition coefficients of TBT and TPT were 2.01 (0.56-5.5) and 9.23 (3.1-20), respectively. These results show that sediment-bound TBT is a source of contamination to clams in addition to dissolved TBT.  相似文献   

18.
Concentrations of mono- (MBT), di- (DBT), and tri-(TBT) butyltin compounds were measured in eggs, liver, and muscle of nine species of fish from four regions of the Baltic Sea - the Firth of Vistula, the Gulf of Gdańsk, Puck Bay, and the mouth of the Vistula River. The overall concentration ranges among all the fish sampled from the four sites were: < 7 to 79 ng/g for MBT, 6 to 1100 ng/g for DBT, 7 to 3600 ng/g for TBT, and 16 to 4800 ng/g for total BTs, on a wet wt basis. The highest concentration of total BTs was found in herring liver from the Firth of Vistula (4800 ng/g, wet wt) and in roach muscle from Puck Bay (3300 ng/g, wet wt), while the least concentration was found in burbot eggs and liver from the Vistula River (39 and 32 ng/g, wet wt, respectively). TBT was the major form of BTs present in most samples analyzed. Sediment samples collected from shipyards in the Gulf of Gdańsk contained butyltin concentrations ranging from 1.2 to 46 μg/g (dry wt) for MBT, 2.0 to 42 μg/g for DBT, and 2.6 to 40 μg/g for TBT. As with the fish, the majority of the BTs in sediment were present as TBT, which suggested recent exposure of the aquatic environment of the region to TBT.  相似文献   

19.
A high-throughput screening method using selective pressurized liquid extraction (SPLE) and enzyme-linked immunosorbent assay (ELISA) for monitoring dioxins in sediment and soil is described. SPLE conditions were developed by extracting sediment or soil together with alumina, 10% AgNO3 in silica, and sulfuric acid impregnated silica (acid silica) using dichloromethane (DCM) as the solvent at 100 °C and 2000 psi. Post-extraction cleanups were not required for ELISA. Two reference sediments (National Institute of Standards and Technology SRM 1944 and Wellington Laboratories WMS01) were analyzed by the SPLE–ELISA method. The ELISA utilized a polyclonal antibody and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as the calibrant. Recoveries of ELISA-derived TCDD equivalents (EQ) relative to the expected gas chromatography/high resolution mass spectrometry (GC/HRMS) derived dioxin toxic equivalent (TEQ) values were 116 ± 11% for SRM 1944 and 102 ± 13% for WMS01. ELISA TCDD EQs were consistent with the dioxin TEQs as measured by GC/HRMS for 25 soil/sediment samples from seven different contaminated sites. The ELISA had an approximate method detection limit of 10 pg g−1 with a precision of 2.6–29% based on the relative percentage difference (%RPD) for duplicate samples. Estimated sample throughput for the SPLE–ELISA was three times or more than that of the GC/HRMS method employing PLE with a multi-column cleanup.  相似文献   

20.
Evaluation of TCDD biodegradability under different redox conditions   总被引:2,自引:0,他引:2  
Kao CM  Chen SC  Liu JK  Wu MJ 《Chemosphere》2001,44(6):1447-1454
Polychlorinated dibenzo-p-dioxins have been generated as unwanted by-products in many industrial processes. Although their widespread distribution in different environmental compartments has been recognized, little is known about their fate in the ultimate environment sinks. The highly stable dioxin isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been called the most toxic compound known to man. In this laboratory microcosm study, TCDD bioavailability was evaluated under five reduction/oxidation (redox) conditions including aerobic biodegradation, aerobic cometabolism, methanogenesis, iron reduction, and reductive dechlorination. Activated sludge and aquifer sediments from a TCDD and a pentachlorophenol (PCP) contaminated site were used as the inocula. Acetate, sludge cake, and cane molasses were used as the primary substrates (carbon sources) in cometabolism and reductive dechlorination microcosms. After a 90-day incubation period, microcosms constructed under reductive dechlorination conditions were the only treatment showing promising remediation results. The highest TCDD degradation rate [up to 86% of TCDD removal (with an initial concentration of 96 microg/kg of soil)] was observed in the microcosms with anaerobic activated sludge as the microbial inocula and sludge cakes as the primary substrates. Except for reductive dechlorination microcosms, no significant TCDD removal was observed in the microcosms prepared under other conditions. Thus, application of an effective primary substrate to enhance the reductive dechlorination process is a feasible method for TCDD bioremediation. Bioremediation expense can be significantly reduced by the supplement of some less expensive alternative substrates (e.g., sludge cakes, cane molasses). Results would be useful in designing a scale-up in situ or on-site bioremediation system such as bioslurry reactor for field application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号