首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
2013年1月河北省中南部严重污染的气象条件及成因分析   总被引:24,自引:2,他引:22  
年1月河北省中南部出现了长时间、大范围的雾霾天气,大气污染严重. 利用河北省AQI(逐日空气质量指数)、气象常规观测数据及NCEP(美国国家环境预报中心)1°×1°格距再分析资料,对此次严重污染事件的气象条件、大气环境背景和形成机制进行了研究. 结果表明:①2013年1月河北省中南部地面气象要素表现异常,与历史同期相比,平均气温低1~2℃、相对湿度高15%以上、日照时数少40%以上、降水日数多但量级小. 地面风力较小且多风向、风速的辐合线,地面散度场上河北省中南部为明显的辐合区,致使水汽和污染物汇聚不易扩散,导致雾霾天气异常偏多,大气污染严重. ②边界层高湿区中丰富的水汽与污染物互为载体,强逆温层结、大气低层的干暖盖、边界层下沉运动等均使水汽和污染物存留在近地层且不易向高空扩散;同时,稳定的大气环流形势为雾霾天气和严重污染提供了有利的大气环境场. ③河北省中南部特殊的地理条件也是雾霾和污染持续的一个重要原因. 低空稳定的偏西气流越过太行山后在山麓东侧下沉,在华北平原地区易形成地面辐合线,从而加剧了近地层水汽和污染物的汇聚.   相似文献   

2.
冷空气过程对江苏持续性霾的影响研究   总被引:1,自引:0,他引:1  
利用地面气象观测资料、PM_(2.5)浓度监测资料和数值模式产品对2016年12月14—24日江苏遭遇的一次长时间霾天气过程进行分析.研究结果表明:过程期间有两次冷空气南下影响江苏省,两次冷空气均带来大风和降水,有效地清除了前期污染物,但随后全省PM_(2.5)浓度开始升高.第一次冷空气强度强于第二次,造成的污染也较重.WRF-Chem模式对本次过程的气象场和PM_(2.5)浓度模拟均较好,模拟观测相关系数分别达到0.52~0.99和0.40.模式能够较好地模拟出污染物的输送过程和时空分布.与第二次冷空气过程相比,第一次冷空气过程存在明显的污染物自北向南输送过程,100~500 m高空持续偏北气流(第2次过程为西北-偏西气流),期间全省平均边界层高度(PBLH)只有260 m(低于第2次过程的500 m),不利于污染物垂直扩散,造成地面浓度较高.利用HYSPLIT-4模式追踪了两次过程中淮安、泰州、无锡三站上空100 m处大气48 h后向轨迹,发现第一次过程中污染物来自山东中西部,第二次来自西部内陆地区.  相似文献   

3.
吴进  李琛  马志强  孙兆彬  朱晓婉  董璠 《环境科学》2020,41(11):4864-4873
对流层臭氧作为典型二次污染物已成为北京春夏季首要污染物,气象因素是影响其浓度变化的主要因子之一.本研究基于2008~2017年大气成分和气象观测数据,利用Lamb-Jenkinson天气分型法结合Mann-Whitney U检验方法将影响北京地区天气型分为6类,其中SWW和C型上甸子臭氧浓度均值和极值分别最高,在4~9月出现频率最高,合计出现47.4%,并通过多元逐步回归方程确定两种型的主要贡献权重.SWW和C型下54%盛行西南风,新排放的污染物和二次老化气团经西南气流持续输送,850 hPa附近出现垂直速度零层,水平和垂直气象条件均有利于臭氧的输送、生成和聚积;AN和ESN型下64.7%盛行东北风或北风,气团来源清洁,1000 hPa以上盛行一致的下沉运动和气流辐散,新排放的污染物也能很快被稀释扩散,臭氧浓度处于较低值.以NW型2015年5月3日为例,虽然地面盛行西北气流,来源清洁,但大气通过垂直下沉运动将边界层以上的高浓度残留臭氧向近地面输送,导致某些天数中出现臭氧浓度高值.  相似文献   

4.
2017年春季华北地区一次典型沙尘重污染天气过程研究   总被引:1,自引:0,他引:1  
结合空气质量监测站小时监测数据、NECP资料、卫星遥感资料,分析了2017年5月3—5日华北地区一次典型沙尘重污染天气过程.结果表明,此次重污染过程主要由前期的浮尘和后期的扬沙天气造成.前期,蒙古气旋强烈发展将沙尘源地的沙尘抽吸到空中并在偏西风作用下,长距离传输到华北地区沉降,造成大范围浮尘天气,多个城市出现严重污染,PM10浓度增高显著.后期,随着高空横槽转竖并东移,受强冷锋影响,京津等地出现大风扬沙天气,大风过后,空气质量转好,PM10浓度降低至较低水平.起沙源地高空辐散、近地面辐合产生强烈的上升运动将沙尘带到空中并向东传输至华北上空,近地面处于弱辐散场,高空的沙尘缓慢下沉,形成了浮尘天气;高空槽东移,高空辐合,近地面辐散,700 hPa至近地面为强烈下沉运动,是形成此次扬沙天气的主要原因.结合天气形势分析和特征量诊断,给出了华北地区此次浮尘和扬沙天气的天气学概念模型.  相似文献   

5.
为了探究边界层气象要素时空分布及其变化对银川市冬季持续污染天气过程污染物质量浓度变化的影响机制,利用2016年12月1日-2017年1月31日逐时空气质量以及地面和逐日定时探空气象观测数据,根据大气污染级别和过程持续时间,选取2016年12月9-21日(简称"1211过程")和2016年12月29日-2017年1月9日(简称"1231过程")为研究对象,采用统计和天气诊断相结合的方法,在分析比较银川市冬季两次典型持续污染过程演变特征及其与地面气象要素关系的基础上,探讨了大气环流、边界层要素变化对银川市冬季典型污染过程的可能影响机制.结果表明:①银川市冬季两次大气污染过程持续阶段,地面均以偏东或偏南风为主,风速较小,相对湿度较大,能见度较低;在污染清除阶段,地面风向转为西北或偏北风,风速较大,相对湿度较小,能见度较高.②当冬季欧亚大陆中纬度区域500 hPa高空盛行纬向气流,850 hPa高度上银川市受反气旋环流和暖温度脊控制,并且有弱暖平流从西南部向北输送时,银川市易出现静稳型持续污染天气.③冬季银川市持续大气污染过程中,ρ(PM2.5)与风速呈负相关(R平均值为-0.326),与相对湿度呈正相关(R平均值为0.688),与能见度呈显著负相关(R平均值为-0.905),与边界层高度呈较显著负相关(R平均值为-0.575).④银川市冬季静稳型持续污染天气主要分为弱西北和平直西风气流型两种,弱西北气流型具有近地面层逆温弱,污染物积累慢,清除快的特征;平直西风气流型具有近地面层逆温强,污染物积累快,清除慢的特征.研究显示,冬季银川市上空500 hPa高度盛行纬向气流,地面主导风向为偏东或偏南风时,随着地面相对湿度增大、近地层风速减小、大气垂直上升运动减弱、边界层高度降低,大气中ρ(PM2.5)将迅速升高,银川市易出现以PM2.5为首要污染物的静稳型持续污染天气.   相似文献   

6.
2004年辽宁地区一次沙尘天气过程的动力机制分析   总被引:3,自引:2,他引:1  
利用NCEP再分析资料、气溶胶指数资料和污染物监测资料,从气候背景和环流形势入手,着重探讨了2004年4月14-16日辽宁地区的一次典型沙尘天气过程的形成动力机制.研究结果表明:2004年春季我国北方的气候背景为春季沙尘天气的发生提供了丰富的沙尘源;此次过程中,高空大槽引导极地强冷空气南下,配合低层强大的蒙古气旋构成了东北地区沙尘过程的典型天气环流形势.在起沙的动力机制方面,高低空急流的耦合加速了低层的辐合上升运动,加速了低层的辐合上升运动,高低空急流的有利配置所触发的强烈上升运动构成此次沙尘过程的主要动力机制.螺旋度上负下正的垂直分布是此次沙尘过程发生发展的重要动力机制,这是由于这种垂直结构对于沙尘过程这种中尺度天气系统而言,构成了低空辐合、高空辐散的深厚上升区,这种螺旋度的垂直分布十分有利于沙尘的发展.  相似文献   

7.
北京地区冬夏季持续性雾-霾发生的环境气象条件对比分析   总被引:29,自引:14,他引:15  
在北京地区,除冬季供暖期外盛夏也是雾-霾天气的高发季节,与我国南方不同.使用微波辐射仪、风廓线和常规气象探测资料、NCEP再分析资料以及大气成分观测结果,通过对比分析揭示了冬、夏季持续6 d的2个雾-霾过程形成和维持机制的异同.冬季雾-霾过程出现在高空西北气流、低层多短波活动的背景下,其形成和维持的主要机制是边界层内始终有逆温层、地面弱风场、底层湿度逐渐增大.逆温层昼高夜低、湿度昼小夜大是影响PM2.5质量浓度和能见度日变化的重要环境因子.在雾-霾天气持续期间地面弱风场能够维持主要源于冷空气势力弱、常不能影响到地面.此外,入夜后地面迅速辐射降温、边界层上层有暖平流以及空气过山后下沉增温在逆温层的形成中起了关键作用.然而,对于夏季持续性雾-霾天气,气溶胶区域输送、环境大气保持对流性稳定、空气的高饱和度是其发生的重要条件.在副热带高压长时间控制下对流层低层盛行偏南风,北京的PM2.5质量浓度随着偏南风风速增大升高.对流层底层系统性偏南风与北京附近的山谷风共同构成了从北京以南气溶胶累积地向北输送的机制.夏季雾-霾过程低层没有逆温,但是北京上空一直维持超过200 J·kG-1的对流抑制能量,它同样限制了污染物的垂直扩散.夏季自由对流高度也存在昼夜变化,其对PM2.5浓度和能见度的作用与逆温层高度升降相同.因此,冬、夏个例分别代表了2种不同类型的持续性雾-霾过程,导致差异的根本原因在于大气环流型.  相似文献   

8.
基于地基遥感资料的厦门市污染边界层特征分析   总被引:2,自引:0,他引:2  
城市大气边界层是影响城市环境气象的重要研究对象,本研究利用新型地基遥感数据针对城市颗粒物污染过程开展边界层特征分析,旨在利用风廓线雷达和微波辐射计等高时空分辨率的遥感数据探讨边界层内大气运动、温湿条件的变化与近地面污染累积的关系.结果表明:厦门地区颗粒物污染过程中,边界层内弱风层厚度较地面风速而言更能够代表边界层内扩散条件的变化,可以更好地表征和预测近地面污染的变化;在局地累积的污染过程中,边界层内存在较厚的弱风层,同时2 km以下的风场有明显的风向转变特征,导致边界层内不存在有效的传输和扩散,另外,污染时边界层垂直温差可以在一定程度上反映干季的垂直扩散条件,0~3 km温差与PM_(2.5)浓度有着密切的联系;冷空气过程有将上游污染物向本地区输送的可能,城市边界层在东北大风的条件下伴随着显著的垂直下沉运动,有利于上空污染向下扩散.多源地基遥感数据联合分析能够进一步解释城市边界层内气象条件对于城市大气污染变化的影响,集合各设备的探测优势开展城市宜居和污染气象条件研究具有较高的科学性和可行性.  相似文献   

9.
浙江北部一次爆发式发展重度大气污染的气象特点和成因   总被引:1,自引:0,他引:1  
基于全国空气质量指数和PM_(2.5)监测、常规气象观测、浙江省6种主要大气污染物和自动气象监测、宁波镇海激光雷达、美国国家环境预报中心GDAS和欧洲中期天气预报中心ERA-interim再分析等多种资料,对2017年12月30日―2018年1月1日浙江北部一次爆发式发展大气污染事件气象特点及成因进行分析,应用HYSPLIT4模式进行粒子后向轨迹分析.结果表明:PM_(10)和PM_(2.5)质量浓度在浙江省表现出明显的爆发性增长和自西北向东南传输的特征,污染程度自浙北向浙中、浙南逐渐减轻,重度污染时浙北大范围出现2000 m以下的重度霾,污染粒子主要来自上游的安徽和江苏省.大气污染爆发式发展与冷空气有关,1000 m以下边界层内冷空气偏弱,但足以将盛行风改变为西北风,是污染物粒子输送的动力条件,污染粒子集中在该层内,层内没有下沉运动,因此水平风场对污染事件爆发有决定性作用;1000 m以上层次冷平流表现明显,且伴有下沉运动,抑制了边界层粒子的垂直扩散,对污染事件的发展和维持有间接影响.激光雷达的消光系数变化不仅与污染物粒子浓度变化有关,还与气象条件密切相关.污染物粒子质量浓度通量散度的变化对预报粒子浓度的增减有较好的参考作用.  相似文献   

10.
2015年12月下旬嘉兴地区持续性雾-霾污染过程分析   总被引:2,自引:0,他引:2  
利用FNL再分析资料、自动气象站和环境监测站的小时观测数据及基于WRF-CHEM化学模式的排放源敏感性对比试验和高分辨率输出结果对2015年12月21-25日影响嘉兴地区的一次持续性雾-霾污染过程进行分析,结果表明:污染期间对流层中高层维持较强的西南急流,南支锋区发展明显,北支槽位置偏高,冷空气势力较弱,大尺度环流形势有利于维持稳定的大气层结结构.PM2.5浓度明显上升时,地面均为西北气流所控制,而浓度下降与地面东北风回流有关.此次雾-霾污染过程期间,本地污染平均贡献率为42%,江苏地区次之约占23%.大气层结稳定时本地污染物的贡献率可达60%左右.两次冷空气过程中外来污染物的输送通量和浓度平流的强度明显不同.近地面不同高度上PM2.5浓度差变化与平流累积贡献量的变化表现出较好的一致性,高层垂直平流较低层明显.  相似文献   

11.
2011年10月珠江三角洲一次区域性空气污染过程特征分析   总被引:3,自引:1,他引:2  
2011年10月18—25日珠江三角洲地区出现了一次区域性空气污染过程,重污染区域集中在西部,后期向中部转移,PM10为首要污染物.针对本次空气污染过程的研究发现,此次珠江三角洲地区空气污染过程主要受大尺度冷高压活动的影响,一直为下沉气流所控制,500 m以下近地层风速很小,边界层高度较低,存在贴地逆温层,非常不利于污染物的输送和扩散.PM10浓度与风速、能见度呈显著的负相关关系,与温度相关性不显著;且与风速和温度的相关性存在滞后性.稳定天气形势、大范围下沉气流、近地层静小风和贴地逆温是导致这次区域性空气污染过程的气象原因,PM10浓度增加导致珠江三角洲能见度下降.  相似文献   

12.
牟南南  朱彬  卢文 《环境科学》2022,43(1):85-92
利用观测资料和中尺度天气-化学模式(WRF-Chem)对一次冷锋南下天气过程导致的我国东部大范围空气污染开展研究,强调了冷锋过境前后的边界层结构及其对PM2.5三维结构和变化的影响.观测发现,地面重污染区域位于冷锋前部均压场或等压线稀疏区域,在冷锋由北向南快速移动过程中,途经各站点PM2.5浓度峰值伴随锋前而至.WRF-Chem模式可以较好地模拟中国东部地面和高空气象要素以及PM2.5浓度的时空变化.模拟结果表明,处于该移动冷锋天气系统相同位置的沿途各站点的边界层结构以及PM2.5垂直廓线表现出相似的特征.即:当冷锋开始入侵时,锋前污染物从地面被抬升到高空,PM2.5浓度的增加和高空风速的增大导致高空PM2.5通量增大,且PM2.5浓度高值区随着高度升高向暖气团一侧倾斜.夜间冷锋过境引发边界层内对流性不稳定增加,边界层高度可达1 km以上,打破了边界层昼夜演变特征.本研究表明,垂直观测和精细模拟的结合可以有效地解释天气过程对空气污染的...  相似文献   

13.
2015年3月17日18:00~23:00北京地区的PM_(2.5)质量浓度快速下降,在此期间并未出现与冷空气活动相伴的强偏北风.本研究分析了导致空气质量迅速改善的原因,结果表明边界层急流起着关键的作用.随着边界层内偏南风速增大,大气的通风量增大,污染物浓度降低.急流发展也加大了边界层内水平风的垂直切变,从而导致湍流增强和混合层增厚.此外,3月17日20:00在混合层顶附近出现气旋性地转涡度,Ekman抽吸的方向为垂直向上,于是底层的污染物就被带到高空并随强劲的西南风输送到下游.边界层急流的发展与惯性振荡和大气的斜压性有关.  相似文献   

14.
This study represents the first quantitative evaluation of pollution transport budget within the boundary layer of typical cities in the Beijing-Tianjin-Hebei (BTH) region from the perspective of horizontal and vertical exchanges and further discusses the impact of the atmospheric boundary layer (ABL)-free troposphere (FT) exchange on concentration of fine particulate matter (PM2.5) within the ABL during heavy pollution. From the perspective of the transport flux balance relationship, differences in pollution transport characteristics between the two cities is mainly reflected in the ABL-FT exchange effect. The FT mainly flowed into the ABL in BJ, while in SJZ, the outflow from the ABL to the FT was more intense. Combined with an analysis of vertical wind profile distribution, BJ was found to be more susceptible to the influence of northwest cold high prevailing in winter, while sinking of strong cold air allowed the FT flowing into the ABL influence the vertical exchange over BJ. In addition, we selected a typical pollution event for targeted analysis to understand mechanistic details of the influence of ABL-FT exchange on the pollution event. These results showed that ABL-FT interaction played an important role in PM2.5 concentration within the ABL during heavy pollution. Especially in the early stage of heavy pollution, FT transport contributed as much as 82.74% of PM2.5 within the ABL. These findings are significant for improving our understanding of pollution transport characteristics within the boundary layer and the effect of ABL-FT exchange on air quality.  相似文献   

15.
2020年1月31—2月2日新冠肺炎疫情期间,广西发生的一次区域性大气PM2.5污染引发社会关注.以南宁市为例,利用在线气体组分及气溶胶监测系统(MARGA)、颗粒物激光雷达,结合地面气态污染物和气象数据卫星火点和后向轨迹等分析本次PM2.5污染成因.依据空气质量分指数,将观测过程划分为优、良和污染3个时段.结果表明,污染时段与生物质焚烧相关的K+、Cl-明显升高,K+、Cl-平均浓度分别为优时段的3.6和17.0倍.3个时段8种水溶性离子总浓度占PM2.5均在30%左右,3种二次水溶性离子浓度之和占8种离子总浓度的比例为83.33%~89.18%,二次无机组分占比高,与秸秆焚烧促进二次转化有关.二次水溶性离子浓度变化趋势与占比不一致,除了与秸秆燃烧排放特征有关,还与不同二次无机离子形成的机制及主要影响因素不同有关.秸秆焚烧火点集中分布在良时段的南宁市及周边城市,良时段秸秆露天焚烧直接排放大量颗粒物、气态污染物等,在污染时段边界层高度明显下降,湿度增加、静风等不利气象条件下积累,是造成疫情期间南宁市大气PM2.5污染的主因.污染时段南宁市无明显的颗粒物垂直传输过程,近地面主要受到广东、广西北部湾偏南气流影响,区域污染传输小.  相似文献   

16.
王莹  智协飞  白永清  董甫  张玲 《环境科学》2022,43(8):3913-3922
作为一个新的区域性霾污染中心,长江中游地区地理位置特殊,是我国中东部地区大气污染物区域传输的重要枢纽,天气环流对该区域不同传输和累积型PM2.5重污染的形成机制还不甚了解.利用T-mode斜交旋转主成分分析法(PCT),对2015~2019年采暖季长江中游地区74 d PM2.5重污染事件进行天气环流分型,得到:PCT1高压底部传输型(天数:41 d,占比:55.4%)、PCT2低压辐合累积型(天数:12 d,占比:16.2%)、PCT3高压静稳累积型(天数:11 d,占比:14.9%)和PCT4高压后部传输型(天数:10 d,占比:13.5%)这4种主要的大气环流类型.区域传输型污染(PCT1和PCT4)占比高达69%,是长江中游地区PM2.5重污染发生的主导因素,突显了地域特殊性.其中,PCT1是最主要的环流型,冷锋南侵伴随强偏北风驱动上游地区污染物快速传输,使得PM2.5浓度暴发式增长.境内传输通道城市襄阳、荆门和荆州PM2.5传输过程具有12 h滞后特征,其PM2.5影响源区主要分布在上游的河南中北部、山东西部和华北大部分地区.PCT4传输型受低层偏东风输送影响,污染上升速率也相对较快.PCT2和PCT3为静稳天气环流型,地面风速较小,低层水平辐合和下沉运动有利本地PM2.5重污染累积,污染上升速率和持续时间都相对传输型更长.  相似文献   

17.
河南省冬季3次重污染过程的数值模拟及输送特征分析   总被引:1,自引:0,他引:1  
利用WRF-Chem模式模拟2015年11月27日—12月1日、12月5—14日、12月19—25日河南3次重污染过程,结合空气污染资料和ERA-Interim再分析资料,对比分析了这3次重污染过程的开始、持续和结束及污染物的输送特征.结果表明,静稳天气有利于污染的发展持续,3次重污染过程的结束均是由西路冷空气入侵造成的.第1次重污染过程平均风场上的风速均为小风或静风,从湖北到河南南部风向为偏南风;而第2和第3次重污染过程平均风场分别以偏东和偏北风为主.第2和第3次重污染过程中均存在明显的由北向南的污染物输送过程.3次重污染过程中,河南省本地排放对本省PM_(2.5)浓度的平均贡献率最大,而河南省周边区域对河南PM_(2.5)浓度的平均贡献率在这3次过程中不一样,第1次重污染过程,河南南部主要受偏南风影响,湖北对河南PM_(2.5)浓度的平均贡献率最大,为20.7%;第2和第3次重污染过程主要受偏东风影响,安徽和江苏对河南PM_(2.5)浓度的平均贡献率最大,分别为17.7%和18.5%.3次重污染过程中,安阳的主要污染输送源均不相同,分别来自河北、江苏和安徽、本省.  相似文献   

18.
吴蒙  罗云  吴兑  范绍佳 《环境科学学报》2017,37(12):4458-4466
利用佛山地区2013年12月大气边界层观测试验得到的垂直风温资料和相应逐日AQI资料、逐时PM_(2.5)浓度资料,研究了佛山地区大气边界层垂直风温结构对空气质量的影响.结果表明:佛山地区干季持续存在的逆温结构是导致PM_(2.5)污染较重的重要原因.干季污染日近60%的最低逆温层高度低于1000 m,而非污染日低于1000 m的最低逆温层仅占36%,污染日佛山贴地逆温频率高达31.2%.逆温层出现高度较低,将污染物压缩积累在贴地层大气中导致污染较重.在大陆冷高压控制下,佛山地区的边界层结构演化非常典型,最大边界层高度和最大边界层通风量表现出了显著相关,污染日日平均边界层高度始终维持在较低的水平,多数时候不足500 m,最大边界层高度则大部分小于1000 m,日平均边界层通风量主要分布在500~1500 m~2·s~(-1)之间,在极端情况下甚至不足300 m~2·s~(-1),最大边界层通风量大部分处于1500~5000 m~2·s~(-1)之间,导致污染物始终聚集在较低的大气边界层内,使得PM_(2.5)浓度长时间维持在较高的污染水平.佛山地区风场存在显著的3层结构,较小的底层风速意味着大气的输送和扩散能力较弱,高度较低的中层使得污染物进一步被压缩累积在大气底层,垂直风场的不稳定性使得污染日佛山地区局地回流活跃,回流(RF)指数极小值多分布在0.2~0.4之间,污染日RF指数普遍小于非污染日,垂直风场的有效输送能力被显著削弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号