共查询到20条相似文献,搜索用时 104 毫秒
1.
以牛粪为原料,采用KOH活化法制备活性炭,并考察了浸渍比、活化剂浓度、活化时间和活化温度等不同制备条件对牛粪活性炭样品性能的影响.实验结果表明,在浸渍比1: 4、KOH质量分数35%、活化时间60 min、活化温度700 ℃条件下制备的活性炭性能最佳,制得的活性炭比表面积为979.8 m2·g-1,碘吸附值可达796.37 mg·g-1,亚甲基蓝吸附值可达150.30 mg·g-1.最后,将制备的牛粪活性炭应用于对Cr(Ⅵ)的吸附,研究了最佳工艺条件下制备的活性炭吸附Cr(Ⅵ)的适宜条件.结果表明,在投加量为8 g·L-1时、吸附时间90 min、pH值为5和较低温度的适宜条件下,自制牛粪活性炭对Cr(Ⅵ)的吸附量最大. 相似文献
2.
以铜藻为原料,在对其进行元素含量、生化组成分析的基础上,分别采用ZnCl2活化法和H3PO4活化法制备活性炭,并以活性炭得率、碘吸附值、焦糖脱色率为指标,采用正交法考察了升温速率、活化温度、浸渍比(活化剂/铜藻质量比)等因素的影响,得到最佳工艺条件.同时,采用扫描电镜(SEM)、Brunauer-Emmet-Tller(BET)比表面积等方法分析活性炭特征.结果表明,铜藻原料粒度对制得的活性炭性能影响显著,106~180μm的颗粒较为适合.ZnCl2活化法制得的活性炭吸附性能明显优于H3PO4活化法;ZnCl2活化法的最佳工艺条件为:升温速率10℃.min-1、活化温度600℃、活化时间2h、浸渍比4,在保证活性炭得率超过30%的基础上,制备的活性炭比表面积为2314.58m2.g-1,碘吸附值为835.3mg.g-1,焦糖脱色率为110%,性能明显优于其他大型海藻原料所制备的活性炭,是陆地传统活性炭原料的有效补充. 相似文献
3.
采用化学共沉淀法将镍铁氧体(NiFe2O4)负载到活性炭,制备出一种磁性吸附剂镍铁氧体@活性炭(NiFe2O4@AC),并将其用于吸附废水中的Cr(Ⅵ).研究了吸附剂吸附Cr(Ⅵ)的影响因素、吸附动力学和吸附等温线.结果表明,在温度为25℃、 pH为2、 Cr(Ⅵ)初始浓度为150 mg·L-1、活性炭投加量为0.1 g、吸附时间为720 min时,NiFe2O4@AC吸附Cr(Ⅵ)的去除率达到96.92%,吸附量达到72.62 mg·g-1.实验数据符合准二级动力学和Langmuir模型,表明其吸附过程是一个单层的化学吸附过程.热力学研究证实,温度升高有利于Cr(Ⅵ)在NiFe2O4@AC上的吸附,该吸附过程是自发和吸热反应.NiFe2O4@AC吸附机制主要是通过络合作用和静电吸引来吸附Cr(Ⅵ),同时,外加磁场可从溶液中分... 相似文献
4.
5.
6.
以咖啡渣为原料,采用真空热解及磷酸溶液辅助活化方式制备出活性炭,重点研究了不同活化参数对咖啡渣制备活性炭性能的影响.结果发现,咖啡渣热解自活化的最佳温度为450℃,在活化温度为600℃、真空度为-0.02 MPa、升温速率为20℃·min-1、活化时间为30 min、浸渍比为1.6条件下制备的活性炭吸附性能最佳,此时活性炭得率为27.1%,比表面积为1250 m~2·g~(-1),碘吸附值为1398.4 mg·g~(-1),亚甲基蓝吸附值为270.32 mg·g~(-1).最佳工艺条件下制备的活性炭吸附100 mg·L~(-1)的Cr(Ⅵ)试验表明,在投加量为7 g·L~(-1)、吸附时间为80 min、pH为3.0和吸附温度为15℃条件下,活性炭对Cr(Ⅵ)的吸附量最大,最大去除率为87%. 相似文献
7.
以水泥厂废旧除尘布袋为原料,KOH为活化剂制备了活性炭.利用热重分析法(TG-DTG)对废旧布袋热解过程进行分析;重点考察了不同炭化温度(400、450、500、550和600℃)对废旧布袋制备活性炭的产率及活性炭的碘吸附值和亚甲基蓝吸附值的影响;同时采用N2吸附等温线对最佳工艺条件制备的活性炭孔隙结构进行了表征.研究结果表明,500℃为最佳炭化温度.最佳炭化温度下制备的活性炭,碘吸附值、亚甲基蓝吸附值和产率分别为1350.72 mg·g-1、97.5 mg·g-1和20.16%.活性炭比表面积高达1228.51 m2·g-1,总孔容达0.7134 cm3·g-1,孔径分布以微孔居多,N2吸附等温线为I型. 相似文献
8.
9.
10.
活性炭表面改性及其对磷(V)吸附性能的研究 总被引:1,自引:1,他引:1
以硝酸、氢氧化钠、氯化铁、海藻酸钠(SA)为改性剂,采用浸渍法制备了六种改性粉末活性炭,研究其对磷(V)的吸附性能。结果表明,以FeCl3直接改性和NaOH/FeCl3复合改性的粉末炭(分别标记为PAC-3和PAC-6)对磷(V)的吸附能力最强,在室温下,处理质量浓度为30 mg/L的磷(V)溶液25 mL,pH为5.0,PAC-3用量为0.4 g,吸附90 min,吸附率可达99%,吸附后的PAC-3可用0.1 mol/LNaOH溶液洗脱再生。共存物质中,NaNO3没有影响,Na2SO4抑制作用不大,Na2CO3和C(rⅥ)有增强作用,其中C(rⅥ)的增强作用显著。吸附机制是静电吸引、离子交换和络合反应共同起作用,以络合反应为主。 相似文献
11.
磷酸活化纺织固体废弃物制备活性炭及表征 总被引:2,自引:0,他引:2
以纺织固体废弃物为原料,磷酸为活化剂,采用一步活化法制备活性炭。采用正交实验研究了磷酸浓度、浸渍时间、活化温度和活化时间对活性炭吸附性能的影响,得到最佳工艺条件,借助氮吸附等温线、BET方程、BJH方程、SEM和FTIR分析了活性炭孔结构和表面化学性质。结果表明:最佳工艺条件为磷酸浓度40%(质量分数)、浸渍时间24h、活化温度500℃、活化时间30min。最佳条件下活性炭碘值为967mg/g,亚甲基蓝值为112mL/g,BET比表面积为1107.51m2/g,总孔容积为1.239cm3/g,中孔容积为1.024cm3/g,中孔占82.65%。活性炭表面具有羟基、羰基、内酯基和多种含磷官能团。 相似文献
12.
13.
以城市污水厂脱水污泥为原料,采用ZnCl2化学活化法,通过添加适量锯末(SAC-W)或椰壳(SAC-C)制备出不同污泥活性炭,其比表面积分别为450.3 m2/g和539.4 m2/g,比纯污泥活性炭的比表面积增加了31.63%和57.67%。将污泥活性炭和选用的煤质活性炭(CAC)用于甲苯动态吸附实验,研究不同活性炭的吸附性能。结果表明,在相同的甲苯初始浓度下,平衡吸附量大小顺序为SAC-C>CAC>SAC-W,污泥活性炭表现较好的吸附性能。对污泥活性炭进行理化性能分析,发现中孔和化学吸附作用对吸附量增加有一定贡献。污泥活性炭的吸附平衡与Langmuir方程拟合较好,相关系数R2为0.995。 相似文献
14.
15.
16.
以炼制生物质油过程中产生的木屑炭为原料,CO2为活化气体,通过物理活化法制备活性炭。考察了活化温度、活化时间及CO2流量对活性炭亚甲基蓝吸附值的影响。采用中心组合实验,运用响应曲面进行工艺参数优化,得出最佳的工艺参数为活化温度850℃,活化时间3.91h,活化气体流量30ml/min,此时由软件预测的亚甲基蓝吸附值为10.66ml/0.1g,得率42.66%,经验证,与实际相符。并对模型进行了检验,验证了其有效性。并选择不同温度下制备活性炭进行N2吸附脱附等温线实验,得到所制备活性炭BET最大可达948m2/g,由BJH理论分可知其中孔比表面积为296m2/g,平均孔径为3.76nm。 相似文献
17.
18.
污泥活性炭理化性质表征及吸附抗生素效果研究 总被引:2,自引:0,他引:2
文章以北京方庄污水处理厂的浓缩和脱水污泥为原料,采用ZnCl2活化法分别制备污泥活性炭。对制得的污泥活性炭进行表征,并将其应用于加替沙星废水的处理。研究2种污泥活性炭吸附反应的吸附时间、吸附剂投加量、pH值、初始浓度4个因子对吸附量的影响,设计正交实验。正交实验结果表明:2种污泥活性炭受到4个因子影响程度相当,表现出明显的相似性,但短期吸附时,脱水污泥表现出更好的吸附性能。初始浓度对吸附量的影响最大,获得最大吸附量的条件组合为:初始浓度200 mg/L,投加量0.05 g,pH=9,t=2 h。浓缩和脱水污泥活性炭的最大吸附量分别可达34.541 mg/g和34.925 mg/g,表明2种污泥活性炭对加替沙星均有良好的吸附效果。污泥活性炭作为一种废水吸附剂,是废水处理的一种新途径。 相似文献
19.
改性活性炭治理室内空气中甲醛的实验研究 总被引:14,自引:3,他引:14
利用亚硫酸氢钠和碳酸钠改性的活性炭对室内空气污染中甲醛进行了治理研究,考察了颗粒活性炭、粉末活性炭、改性活性炭对甲醛去除率的影响。测试了改性活性炭的平衡吸附量,吸附穿透时间。结果表明,亚硫酸氢钠和碳酸钠改性的活性炭对甲醛的去除率为60%,动态治理后能够达到国家室内空气质量标准。并通过扫描电镜图谱分析了改性活性炭的吸附机理。 相似文献