首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In the present work, a shaft-type furnace model in which the furnace column is divided into multiple cells was proposed and equilibrium reaction calculation software was used to describe the model. The model was used to study the effects of gasification and melting conditions such as temperature, oxygen partial pressure, and chlorine content on the volatilization behaviors of the low-boiling-point metals Na, K, Pb, and Zn during the gasification and melting process of municipal solid waste in a shaft-type furnace. Consequently, the volatilization ratios of Na, K, Pb, and Zn compounds in the exhaust gas from a pilot plant shaft-type furnace were found to be in good agreement with the calculation results, and the Na, K, Pb, and Zn compounds were volatilized mainly as metal chlorides in the temperature range up to approximately 1173 K. With a further rise in temperature, these low-boiling point metals were volatilized as metallic forms. It was found that almost 100% of Pb and Zn compounds were volatilized regardless of the chlorine content in municipal solid waste; in contrast, the volatilization rates of Na and K increased when the chlorine content increased. Finally, Na, K, Pb, and Zn compounds were converted from reduced metals to metal chlorides such as NaCl, KCl, PbCl2, and ZnCl2 with an increase in the ratio of chlorine to each metal.  相似文献   

2.
In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.  相似文献   

3.
The thermodynamic equilibrium of trace lead during the waste incineration was calculated on the basis of the minimization of the total Gibbs energy. The effect of incineration condition and MSW components on Pb distribution was investigated mainly in the view of the interaction of related elements. In the oxygen-rich condition, incineration temperature affects Pb distribution by the interaction of Cl, Ca and Na. In the fuel-rich condition, incineration temperature affects Pb distribution directly by the thermal transition of PbS(s) to PbCl(g) and the thermal transition of PbCl(g) to Pb(g). Air ratio has significant effect on Pb distribution by the interaction of H, O and Cl. The liberated Cl in oxidizing condition is far less than that in reducing condition. Na has the top priority to bond with Cl, than Ca only at low temperature and H only at high temperature, so the effect of Cl on Pb distribution depends on the content of Na and Ca. S promotes Pb volatilization by the interaction with Na in oxygen-rich and chlorine-poor condition and depresses Pb volatilization by the formation of PbS(s) directly without interaction with other elements in fuel-rich condition.  相似文献   

4.
To reutilize molten slag derived from an ash melting process, the lead volatilization mechanism under reducing conditions was investigated. Reducing conditions were established by introducing a CO-CO2-N2 gas mixture to the reactor or by adding graphite to the molten slag prior to the experiments. As samples, two types of simulated molten slag composed of CaO-SiO2-Al2O3 mixed with PbO were used and the lead volatilization behavior was studied at 1773 K. It was found that the lead volatilization rate increased on increasing the amount of reducing agent for both graphite and the CO-CO2 gas mixture. For the CO-CO2 reducing gas mixture, this increase was mainly attributed to PbO conversion to Pb. For the addition of graphite, the increase in lead volatilization ratio was considered to partially result from PbO conversion to Pb and partially from a reaction of graphite with SiO2 yielding volatile SiO. The volatile SiO gas was then emitted from the furnace, which brought about a reduction in the SiO2 content of the slag. As a result, the slag viscosity decreased, which led to an enhancement of the lead volatilization ratio.  相似文献   

5.
In Japan, melting-furnace fly ash (MFA) generated from ash melting and gasification/melting plants is considered an “urban mine” due to its high metal content. This study aimed to develop a novel approach to pretreating MFA for metal recovery. Water extraction with CO2 bubbling was investigated because MFA mainly consists of water-soluble salts containing elements such as Cl, Ca, Na, and K. Instead of acid addition, CO2 bubbling was applied to maintain the optimal pH for minimizing the release of target metal elements and maximizing the removal of undesirable elements during water extraction. The results revealed that CO2 bubbling effectively decreased the release of Pb, Zn, and Cd into the treatment water. This was mainly due to coprecipitation with CaCO3, which was primarily formed by the reaction of Ca2+ from the MFA with CO3 2− from the CO2 gas. The bubbling process also helped accelerate the removal of Cl from MFA. Furthermore, the study showed that it is possible to lower the water-to-solid ratio to 5 with only a slight reduction in water extraction effect. Finally, approximately four times the concentration of target metals (rare metals and Cu, Pb, and Zn) was achieved by removing 90% of Cl, 70%–90% of Na and K, and 30%–40% of Ca through water extraction with CO2 bubbling, resulting in a concentration of target metals that was nearly equal to that of ore.  相似文献   

6.
The use of soluble PO43− as a heavy metal chemical stabilization agent was evaluated for a dust generated from melting or vitrification of municipal solid waste combustion residues. Vitrification dusts contain high concentrations of volatile elements such as Cl, Na, K, S, Pb, and Zn. These elements are present in the dusts largely as simple salts (e.g. PbCl2, ZnSO4) which are highly leachable. At an experimental dose of 0.4 moles of soluble PO43− per kg of residue, the pH-dependent leaching (pH 5,7,9) showed that the treatment was able to reduce equilibrium concentrations by factors of 3 to 100 for many metals; particularly Cd, Cu, Pb and Zn. Bulk and surface spectroscopies showed that the insoluble reaction products are tertiary metal phosphate [e.g. Zn3(PO4)2] and apatite [e.g. Pb5(PO4)3Cl] family minerals. Geochemical thermodynamic equilibrium modeling showed that apatite family and tertiary metal phosphate phases act as controlling solids for the equilibrium concentrations of Ca2+, Zn2+, Pb2+, Cu2+, and Cd2+ in the leachates during pH-dependent leaching. Both end members and ideal solid solutions were seen to be controlling solids. Soluble phosphate effectively converted soluble metal salts into insoluble metal phosphate phases despite the relatively low doses and dry mixing conditions that were used. Soluble phosphate is an effective stabilization agent for divalent heavy metals in melting dusts where leachable metals are present in high concentrations.  相似文献   

7.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   

8.
In this study, metal behavior in ash-melting and municipal solid waste (MSW) gasification-melting facilities were investigated. Eight ash-melting and three MSW gasification-melting facilities with a variety of melting processes and feedstocks were selected. From each facility, melting furnace fly ash (MFA) and molten slag were sampled, and feedstock of the ash-melting processes was also taken. For the ash melting process, the generation rate of MFA was well correlated with the ratio of incineration fly ash (IFA) in feedstock, and this was because MFA was formed mostly by mass transfer from IFA and a limited amount from bottom ash (BA). Distribution ratios of metal elements to MFA were generally determined by volatility of the metal element, but chlorine content in feedstock had a significant effect on Cu and a marginal effect on Pb. Distribution ratio of Zn to MFA was influenced by the oxidizing atmosphere in the furnace. High MFA generation and distribution ratio of non-volatile metals to MFA in gasification-melting facilities was probably caused by carry-over of fine particles to the air pollution control system due to large gas volume. Finally, dilution effect was shown to have a significant effect on metal concentration in MFA.  相似文献   

9.
Municipal Solid Waste Incineration (MSWI) produces different sorts of residues, bottom ash, fly ashes and Air Pollution Control (APC) residues. Generally, fly ashes and APC residues are mixed at the MSWI plant and manage as a sole residue. In this study, fly ashes and APC residues have been sampled separately at different Belgian MSWI plant and analysed by X-ray fluorescence in order to highlight the composition differences that may appear between the solids. Ca and Cl are found to be the major elements in most of the samples. Lithophilic elements, such as Al and Si, are richer in furnace and boiler ashes, as can be expected. Leaching tests also show differences between the residues; leachates from furnace and boiler ashes are alkaline while those from bag filter residues present a pH value of 6, which impacts the leaching of heavy metals (Pb and Zn). The results suggest that it could be advantageous to manage fly ashes and APC residues separately by adjusting the treatment to their specificities.  相似文献   

10.
Surrogate measurements should be low in cost and quick to perform. To examine its feasibility, continuous surrogate monitoring was performed using an organic halogen compound (OHC) analyzer. Surrogates for dioxins (DXNs) from waste incinerators were examined by changing the operating conditions such as the atomized volume of activated carbon added and the temperature at the inlet of the dust collector. OHCs were measured along with DXNs in flue gas at the inlet and the outlet of the dust collector of two waste incinerators over five runs; the fly ash was sampled at the same time. Although the final flue gas concentration of DXNs at the incineration plants was below the regulation criteria, this does not mean complete reduction of DXNs. In addition, the de novo synthesis of DXNs inside the dust collectors was studied by analyzing the mass balance for DXNs concentrations in flue gas and fly ash. Semivolatile chlorinated organic compound concentrations at the outlet of the bag filter were basically well correlated with DXNs levels at the inlet of the bag filter in the test runs. When advanced flue gas treatment is applied by using a bag filter and lime/activated carbon adsorbent, DXNs that may be generated during flue gas cooling processes move to the fly ash, and this amount determines the mass balance of the entire system. It may be useful to monitor surrogate organic halogens for detecting changes in DXN concentrations of both flue gas and fly ash in incineration plants.  相似文献   

11.
In terms of resource recovery and environmental impact, melting furnace fly ash (MFA) is attracting much attention in Japan due to its high metal content. The study aims to obtain fundamental information on using a water extraction method not only to concentrate valuable rare metals but also to remove undesirable substances such as chlorine for their recovery from MFA. The composition and leaching characteristics of MFA was investigated. The results revealed that the metal content in MFA is nearly equal to raw ore quality. The content of Ag, In, Pd, Pb, and Zn is, in fact, higher than the content of raw ore. As for leaching behavior, Ag, Bi, In, Ga, Ge, Sb, Sn, and Te showed the lowest release at a neutral pH range. Pd was leached constantly regardless of pH, but its concentration was quite low. On the other hand, most of the Tl was easily leached, revealing that water extraction is not appropriate for Tl recovery from MFA. Major elements Cl, Ca, Na, and K, occupying about 70% of MFA, were mostly leached regardless of pH. Base metal elements Cu, Pb, and Zn showed minimum solubility at a neutral pH. The leaching ratio of target rare metal elements and base metal elements suggests that the optimal pH for water extraction is 8-10, at which the leaching concentration is minimized. The water extraction process removed most of the Cl, Ca, Na, and K, and the concentration of rare metals and base metals increased by four or five times.  相似文献   

12.
The service life of many buildings and houses built using asbestos-containing materials is coming to an end and their demolition will lead to a great deal of asbestos-containing waste (ACW). Conventionally, the disposal of such waste is conducted by isolation under controlled landfill procedures; however problems with this method exist, such as the risk at the time of re-utilization of landfill sites and the depletion of lands to be reclaimed. Melting treatment is a promising technology that could be used to solve these problems; a thermal process involving temperatures exceeding the melting points of asbestos, it transforms them into non-hazardous minerals. This technology may be applicable not only for friable ACW but also for nonfriable ACW. We performed a demonstration test of melting treatment of nonfriable ACW using a gasification and melting furnace of the shaft furnace type, which is a typical method for high temperature melting. Detailed observation using transmission electron microscopy as well as general analyses verified that the same level of asbestos remained in the slag obtained by high temperature melting as that of the background soil. In addition, the asbestos concentration in the exhaust gas and the dust from the facility were at sufficiently low levels, and it was thus verified that the asbestos concentration in the atmosphere in the vicinity of the facility during the melting treatment was comparable to that of Japan’s background level reported by the Ministry of the Environment in 2007.  相似文献   

13.
The potential use of filter dust in asphalt composites for road construction was investigated. Filter dust contains high concentrations of metals, of which Cr(VI) and Pb are leached with water. Compact and ground asphalt composites with addition of 2% of filter dust by mass were studied. In order to evaluate their environmental impact, leachability tests were performed using water and salt water as leaching agents. The concentrations of Cr(VI) and Pb were determined in leachates over a time period of 182 days. The results indicated that Pb was not leached with leaching agents from asphalt composites. Cr(VI) was also not leached with leaching agents from compact asphalt composites. However, in ground asphalt composites, Cr(VI) was leached with water in concentrations up to 220 microg L(-1) and in salt water up to 150 microg L(-1). From the physico-mechanical and environmental aspects, filter dust can be used as a component in asphalt mixtures.  相似文献   

14.
陈燕斌 《化工环保》2021,41(2):241-245
为了去除石化行业乙烯装置裂解炉烧焦尾气中的颗粒污染物,对传统用于气体除尘的旋风分离器进行改进,设计了一种新型旋流除尘器,并将其应用于乙烯装置裂解炉清焦过程中。经新型旋流除尘器处理后,出口气中焦粉颗粒质量浓度基本控制在15 mg/m3以下,符合GB 31570—2016《石油炼制工业污染物排放标准》的排放要求(≤20 mg/m3),平均分离效率达到92.8%,粒径在10 μm以上的焦粉颗粒得到大幅度去除。  相似文献   

15.
The efficiency of a blast furnace slag cement (Spanish CEM III/B) for immobilizing simulated radioactive borate liquid waste [containing H3BO3, NaCl, Na2SO4 and Na(OH)] has been evaluated by means of a leaching attack in de-mineralized water at the temperature of 40 degrees C over 180 days. The leaching was carried out according to the ANSI/ANS-16.1-1986 test. Moreover, changes of the matrix microstructure were characterized through porosity and pore-size distribution analysis carried out by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) and thermal analysis (TG). The results were compared with those obtained from a calcium aluminate cement matrix, previously published.  相似文献   

16.
We describe the results of an aerosol sampling campaign performedin 1999 in the medium-size industrial town of La Spezia, in theNorthwest of Italy. We used two-stage continuous streakersamplers in three different sites and periods of the year. This kind of samplers allows the separation of the PM10 andPM2.2 fractions of the particulate matter. Moreover, the hourly resolution in the aerosol collection is particularly useful inan urban environment where, typically, many pollution sourceswith fast variations are present. Up to 1700 samples have beenanalysed by Particle Induced X-ray Emission (PIXE) at the INFNaccelerator facility in Florence, obtaining hourly concentrationfor about 20 elements from Na to Pb, with a sensitivity rangingfrom below 1 to about 10 ng m-3. The total hourly aerosolmass has been estimated with an optical analysis of the samesamples performed (before the PIXE analysis) by an equipment designed and mounted in Genoa. An extensive statistical analysisof the data included standard and Absolute Principal ComponentFactor Analysis (PCFA and APCFA) to deduce the compositionand the weight of the major aerosol sources in both fractions.Thorough different statistical approaches, we generally resolvedcontributions from vehicle emission, fossil fuel combustion,soil-road dust and sea salt aerosol.  相似文献   

17.

Phosphorus rich sewage sludge ash is a promising source to produce phosphorus recycling fertilizer. However, the low plant availability of phosphorus in these ashes makes a treatment necessary. A thermochemical treatment (800–1000 °C) with alkali additives transforms poorly plant available phosphorus phases to highly plant available calcium alkali phosphates (Ca,Mg)(Na,K)PO4. In this study, we investigate the use of K2SO4 as additive to produce a phosphorus potassium fertilizer in laboratory-scale experiments (crucible). Pure K2SO4 is not suitable as high reaction temperatures are required due to the high melting point of K2SO4. To overcome this barrier, we carried out series of experiments with mixtures of K2SO4 and Na2SO4 resulting in a lower economically feasible reaction temperature (900–1000 °C). In this way, the produced phosphorus potassium fertilizers (8.4 wt.% K, 7.6 wt.% P) was highly plant available for phosphorus indicated by complete extractable phosphorus in neutral ammonium citrate solution. The added potassium is, in contrast to sodium, preferably incorporated into silicates instead of phosphorus phases. Thus, the highly extractable phase (Ca,Mg)(Na,K)PO4 in the thermochemical products contain less potassium than expected. This preferred incorporation is confirmed by a pilot-scale trial (rotary kiln) and thermodynamic calculation.

  相似文献   

18.
Thermal treatment of municipal solid waste (MSW) has become a common practice in waste volume reduction and resource recovery. For the utilization of molten slag for construction materials and metal recovery, it is important to understand the behavior of heavy metals in the melting process. In this study, the correlation between the contents of elements in feed materials and MSW molten slag and their distributions in the ash melting process, including metal residues, are investigated. The hazardous metal contents in the molten slag were significantly related to the contents of metals in the feed materials. Therefore, the separation of products containing these metals in waste materials could be an effective means of producing environmentally safe molten slag with a low hazardous metals content. The distribution ratios of elements in the ash melting process were also determined. The elements Zn and Pb were found to have a distribution ratio of over 60% in fly ash from the melting furnace and the contents of these metals were also high; therefore, Zn and Pb could be potential target metals for recycling from fly ash from the melting furnace. Meanwhile, Cu, Ni, Mo, Sn, and Sb were found to have distribution ratios of over 60% in the metal residue. Therefore, metal residue could be a good resource for these metals, as the contents of Cu, Ni, Mo, Sn, and Sb in metal residue are higher than those in other output materials.  相似文献   

19.
Vitrification of electric arc furnace dusts   总被引:6,自引:0,他引:6  
Electric arc furnace baghouse dust (EAFD), a waste by-product of the steelmaking process, contains the elements that are volatilized from the charge during the melting (Cr, Pb, Zn, Cu and Cd). The results of leaching tests show that the concentration of these elements exceeds the regulatory limits. Consequently, EAFD cannot be disposed of in ordinary landfill sites without stabilization of the heavy metals. In this work, the vitrification of EAFD, from both carbon and stainless steel productions, were studied. The vitrification process was selected as the inertizing process because it permits the immobilization of the hazardous elements in the glass network and represents an environmentally acceptable method for the stabilization of this waste. Classes of various compositions were obtained by mixing EAFD with glass cullet and sand. The EAFD and the glass products were characterized by DTA, TG, X-ray analysis and by the TCLP test. The results show that the stability of the product is influenced by the glass structure, which mainly depends on the Si/O ratio. Secondary crystallization heat-treatment were carried out on some samples. The results highlighted the formation of spinel phases, which reduced the chemical durability in acid media. The possibility to recover Zn from carbon steel production EAFD was investigated and about 60-70% of metal recovery was obtained. The resulting glass show higher chemical stability than glasses obtained without metal recovery.  相似文献   

20.
Waste disposal systems conventionally exhibit many problems, such as difficulties in finding final disposal sites for incinerator residues and the issue of how to recycle waste materials. Some new technologies have been developed to solve such problems, including ash melting and gasification melting. Furthermore, to improve the power generation efficiency of waste treatment facilities so that their energy is used more efficiently, combined stoker/gas turbine power generation (super waste power generation) technology has been developed. Through examination of two cases in this study, environmental impacts and costs were determined using lifecycle assessment (LCA) and lifecycle cost (LCC) methods in a model city. In case 1, a stoker furnace was compared to a combined stoker/gas turbine system. In case 2, a stoker furnace plus ash melting system was compared to a gasification melting system. The results demonstrate that the stoker furnace has a lower environmental impact than the combined stoker/gas turbine system in case 1, and that the stoker plus ash melting system costs less than the gasification melting system in case 2, but both systems had strong impacts on the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号