首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Modeling the effects of ozone on soybean growth and yield   总被引:1,自引:0,他引:1  
A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.  相似文献   

2.
Modeling the impact of ozone x drought interactions on regional crop yields   总被引:3,自引:0,他引:3  
The influence of soil moisture stress on crop sensitivity to O3 was evaluated for corn (Zea mays L.), cotton (Gossypium hirsutum L.), soybean (Glycine max L. Merr.), and wheat (Triticum aestivum L.) grown in the United States. This assessment was accomplished by using yield forecasting models to estimate the influence of soil moisture deficits on regional yield and a previously developed model to predict moisture stress x O3 interactions. Reduced crop sensitivity to O3 was predicted for those regions and years for which soil moisture stress reduced yield. The models predicted a drought-induced reduction in crop sensitivity to O3 of approximately 20% for the 1979 to 1983 period; i.e. a hypothetical O3-induced yield reduction of 5% for adequately watered crops would have been reduced to a 4% effect by the 1979 to 1983 distribution of soil moisture deficits. However, predicted drought effects varied between crops, regions, and years. Uncertainties in the model predictions are also discussed.  相似文献   

3.
Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at all times of the growing season. This may be inaccurate in regions with a Mediterranean climate, such as California and the Pacific Northwest, where peak physiological activity occurs early in the season to take advantage of high soil moisture and does not correspond to peak ozone concentrations. It may also misrepresent ecosystems experiencing non-average climate conditions such as drought years. We compared direct measurements of ozone flux into a ponderosa pine canopy with a suite of the most common ozone exposure metrics to determine which best correlated with actual ozone uptake by the forest. Of the metrics we assessed, SUM0 (the sum of all daytime ozone concentrations > 0) best corresponded to ozone uptake by ponderosa pine, however the correlation was only strong at times when the stomata were unconstrained by site moisture conditions. In the early growing season (May and June). SUM0 was an adequate metric for forest ozone exposure. Later in the season, when stomatal conductance was limited by drought. SUM0 overestimated ozone uptake. A better metric for seasonally drought-stressed forests would be one that incorporates forest physiological activity, either through mechanistic modeling, by weighting ozone concentrations by stomatal conductance, or by weighting concentrations by site moisture conditions.  相似文献   

4.
Rural and urban ozone (O3) monitoring data for the Tennessee Valley and crop loss models developed under the National Crop Loss Assessment Network (NCLAN) were used to estimate potential yield reductions for winter wheat, corn, soybean, cotton, and tobacco during the 1982 to 1984 growing seasons. Reductions from 0 to 20% of potential crop yields were estimated due to ambient O3. Rural O3 exposures measured in the Tennessee Valley were significantly higher than the measured urban exposures, suggesting that spatial interpolation from urban O3 records may underestimate rural O3 and thereby potential crop loss. Seasonal mean O3 exposures were highest in summer 1983, and similar in 1982 and 1984. Although a consistent inverse relationship was found between measured crop yields in the Tennessee Valley and seasonal O3 exposures, annual variation in yields was much greater than attributable to the annual variation in O3. Moisture stress, as indicated by the Palmer Drought Severity Indices, is likely the major determinant for yields of nonirrigated crops. This is consistent with field studies that demonstrate that ambient O3 levels can reduce crop yields under ideal soil moisture conditions, but cause little to no detectable yield reduction for nonirrigated crops. These models could be improved if crop response to O3 were allowed to vary as a function of environmental factors such as moisture stress.  相似文献   

5.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

6.
A field test was conducted to determine if ozone pollution adversely affected the chlorophyll content and seed yield of soybean. Eight soybean cultivars were grown to maturity in test plots in central New Jersey; one-half of the plots was treated with an antioxidant (ethylenediurea) to protect the plants from the effects of ambient ozone and one-half was left untreated. Periodic chlorophyll measurements revealed no significant difference between EDU-treated and untreated plots during the major part of plant growth. The absence of a yield effect predicated on the normal chlorophyll content was corroborated by actual total seed measurement. Our results did not support predictive models that forecast a significant yield reduction from a 7-h seasonal mean of 0.058 ppm 03, but agreed with results obtained previously in Maryland and Georgia.  相似文献   

7.
To determine if stomatal conductance (g(s)) of forest trees could be predicted from measures of leaf microclimate, diurnal variability in in situ g(s) was measured in black cherry (Prunus serotina), red maple (Acer rubrum), and northern red oak (Quercus rubra). Relative to overstory trees, understory saplings exhibited little diurnal variability in g(s) and ozone uptake. Depending on species and site, up to 30% of diurnal and seasonal variation in g(s )of overstory trees was explained by photosynthetically active radiation and vapor pressure deficit. Daily maximum g(s) was significantly related to soil moisture in overstory northern red oak and black cherry (R(2) ranged from 33 to 65%). Although g(s) was not fully predicted using instantaneous measures of leaf microclimate, ozone uptake of large forest trees was reduced by low soil moisture.  相似文献   

8.
This study investigates the use of ozone for soil remediation. Batch experiments, in which ozone-containing gas was continuously recycled through a soil bed, were conducted to quantify the rate of ozone self-decomposition and the rates of ozone interaction with soil organic and inorganic matter. Column experiments were conducted to measure ozone breakthrough from a soil column. Parameters such as ozone flow rate, soil mass, and ozonation time were varied in these experiments. After ozone concentration had reached steady state, the total organic carbon concentration was measured for all soil samples. The ozonation efficiency, represented by the ratio of soil organic matter consumed to the total ozone input, was quantified for each experiment. Numerical simulations were conducted to simulate experimentally obtained column breakthrough curves. Experimentally obtained kinetic rate constants were used in these simulations, and the results were in good agreement with experimental data. In contrast to previous studies in which soil inorganic matter was completely ignored, our experiments indicate that soil inorganic matter may also promote depletion of ozone, thus reducing the overall ozonation efficiency. Three-dimensional numerical simulations were conducted to predict the efficacy of ozonation for soil remediation in the field. These simulations indicate that such ozonation can be very effective, provided that effective circulation of ozone is achieved through appropriately placed wells.  相似文献   

9.
The yields of eleven commercially grown soybean cultivars were compared in ethylenediurea (EDU)-treated and non-treated field plots in New Brunswick, New Jersey, over a 4 year period. No statistically significant difference between treatments was found for any cultivar; the inference being ambient ozone did not adversely affect soybean yield. Succeeding field experiments supported this interpretation of the data. 'Sanilac' white bean, a legume known to be more sensitive to O(3) than soybean, was found to produce a significantly greater yield in EDU-treated than non-treated plots, unlike a companion planting of 'Williams 82' soybean which did not exhibit the differential response. The results indicated that the specific EDU protocol used in the soybean experiments is capable of detecting an ozone effect in a legume. Moreover, in a concurrent greenhouse experiment the yield of EDU-treated Sanilac white bean was not significantly different from non-treated plants in the absence of ozone pollution. In a dose-response field experiment during a year of unusually high O(3) pollution, yield of 'Williams 82' increased slightly with each EDU increment up to 500 ppm and decreased at 1000 ppm. The difference between non-treated and EDU-treated plants, however, was not statistically significant. There was no evidence to suggest that the EDU concentration (500 ppm) used in previous soybean experiments reduced seed yield. Fortuitously, the tolerance of commercially-grown soybean to ambient ozone is at least partially conditioned by the practce of not irrigating the crop. The New Jersey results are in agreement with reports from Maryland, Georgia and Tennessee in which an adverse impact of ambient O(3) was not found in soybean, but contrary to a current predictive model.  相似文献   

10.
For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.  相似文献   

11.
The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (psi(L)) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g(wv)) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P(n)), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P < 0.05). The inconsistent differences in gas exchange response within the same crowns of ash and the uncoupling relationship between g(wv) and P(n) demonstrate the strong influence of heterogeneous environmental conditions within forest canopies.  相似文献   

12.
Modelling stomatal ozone flux across Europe   总被引:4,自引:0,他引:4  
A model has been developed to estimate stomatal ozone flux across Europe for a number of important species. An initial application of this model is illustrated for two species, wheat and beech. The model calculates ozone flux using European Monitoring and Evaluation Programme (EMEP) model ozone concentrations in combination with estimates of the atmospheric, boundary layer and stomatal resistances to ozone transfer. The model simulates the effect of phenology, irradiance, temperature, vapour pressure deficit and soil moisture deficit on stomatal conductance. These species-specific microclimatic parameters are derived from meteorological data provided by the Norwegian Meteorological Institute (DNMI), together with detailed land-use and soil type maps assembled at the Stockholm Environment Institute (SEI). Modelled fluxes are presented as mean monthly flux maps and compared with maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb or nl l(-1)), highlighting the spatial differences between these two indices. In many cases high ozone fluxes were modelled in association with only moderate AOT40 values. The factors most important in limiting ozone uptake under the model assumptions were vapour pressure deficit (VPD), soil moisture deficit (for Mediterranean regions in particular) and phenology. The limiting effect of VPD on ozone uptake was especially apparent, since high VPDs resulting in stomatal closure tended to co-occur with high ozone concentrations. Although further work is needed to link the ozone uptake and deposition model components, and to validate the model with field measurements, the present results give a clear indication of the possible implications of adopting a flux-based approach for future policy evaluation.  相似文献   

13.
A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.  相似文献   

14.
Biological research has established that air pollution can affect the yield and quality of agricultural crops. Economic assessments of crop exposure to air pollution have focused on the yield effect. This study illustrates the implications of considering crop quality effects in addition to crop yield changes for the case of O3 impacts on soybeans. An economic model of US soybean, soybean oil, and soybean meal markets is used to simulate the impacts of increased soybean yields due to reduced O3 concentrations with and without changes in soybean quality. The simulations with quality effects are richer in their distributional implications and show larger increases in economic surplus than the simulations with yield effects only.  相似文献   

15.
A simulation model was developed to estimate the stomatal conductance and ozone flux to Norway spruce saplings in open-top chambers. The model was parameterized against needle conductance measurements that were made on 4-6-year-old spruce saplings, grown in open-top chambers, in July-September during three different seasons. The spruce saplings were either maintained well watered or subject to a 7-8 week drought period in July-September each year. The simulated conductance showed a good agreement with the measured conductance for the well-watered as well as the drought stress-treated saplings. The simulations were significantly improved when different vapour pressure deficit (VPD) functions were applied for well-watered and drought-stressed spruce saplings. The cumulated ozone uptake which was calculated from the conductance simulations showed less variation between years, compared to the cumulative ozone exposure index AOT40 (accumulated exposure over a threshold of 40 ppb or nl l(-1)) for the corresponding time periods. Measurements in May 1995 demonstrated the occurrence of long-term 'memory-effects' from the drought stress treatments on the conductance. Memory-effects need to be considered when simulation models for stomatal conductance are to be applied to long-lived forest trees under a multiple stress situation.  相似文献   

16.
The vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in environmental conditions affecting the vadose zone. A mathematical model to simulate the water flow, and the fate and transport of recalcitrant contaminants was developed, which could be applied to various bioremediation methods such as phytoremediation and natural attenuation in the vadose zone. Two-phase flow equations and heat flux models were used to develop the model. Surface energy, balance equations were used to estimate soil surface temperature, and root growth and root distribution models were incorporated to represent the special contribution of plant mots in the vegetated soils. Interactions between the roots and environmental conditions such as temperature and water content were treated by incorporating a feedback mechanism that made allowance for the effects of water and temperature stresses on root distribution and water uptake by roots. In conducting the modeling study, Johnson grass and unplanted soil were simulated to compare the effect of root water uptake on soil water content. After the numerical experiments were conducted to investigate model behavior, the proposed model was applied to estimate actual water flow and heat flow in field lysimeter experiments over a 1-year period. Root growth and distribution for Johnson grass and rye grass were simulated to compare the warm season grass to the cold season grass. A significant agreement was observed between the simulations and measured data.  相似文献   

17.
Water-stressed and well-watered soybean (Glycine max cvs. Williams and Corsoy) plants were exposed to increasing seasonal doses of ozone (O(3)) using open-top field chambers and ambient air plots. Chamber O(3) treatments included charcoal filtered (CF) air, non-filtered (NF) air, NF + 0.03, NF + 0.06 and NF + 0.09 microl litre(-1) O(3). Soil water potentials measured at 25 and 45 cm averaged -0.40 MPa and -0.05 MPa, respectively, for the plots in the water-stressed and well-watered series. Total root length/core, root length densities, and biomasses (dry weights) were determined. With Williams, a very popular cultivar in recent years, total root length for all O(3) treatments averaged 58% more under water-stress conditions than in well-watered plots, but the range was from 136% to 11% more for NF air and NF + 0.09 microl litre(-1) O(3), respectively. Increasing the O(3) exposure dose did not affect root lengths or weights in the well-watered series. With Corsoy, water stress did not significantly increase root development. In both soil moisture regimes, with both cultivars, there was a linear decrease in seed yield and top dry weight as the O(3) exposure dose increased.  相似文献   

18.
The effects of potassium fertilization and ozone stress were investigated in a clone of Picea abies (L.) Karst, by studies of the uptake of CO(2) by the crowns, the element content, on leaching of the youngest needles, and the longevity of the needles. All plants were exposed to 0.075 microl litre(-1) SO(2) from January to April 1986. The average ozone concentrations applied during the subsequent growing season (May-December) were 0, 0.027, 0.050 and 0.100 microl litre(-1). Half of the trees received liquid fertilizer applications from April to July 1986. CO(2) uptake by the crowns was significantly reduced in non-fertilized plants at ozone doses of 100-200 microl litre(-1) h, whereas similar reductions were recorded in fertilized plants only above an ozone dose of 300 microl litre(-1) h. Independent of the fertilization, however, the concentrations of calcium, magnesium and nitrogen in the needles increased in parallel with the ozone dose, whilst potassium, phosphorus and sulphur showed little response to ozone. In both nutrient regimes, the diffusive loss of elements from chloroform-washed needles was similar and tended to be reduced at the highest ozone concentration, when relating the leachate to the corresponding element content in the needles. Needles formed in the highest ozone treatment were significantly shed during the succeeding year, regardless of the nutrient supply. It appears that increased potassium supply has little compensating effect on ozone stress in spruce.  相似文献   

19.
选取通气量、含水率、温度、底物浓度等作为堆肥控制因子,在堆肥生物反应动力学的基础上,根据堆肥反应过程的物料平衡和能量平衡,以及微生物比生长速度与含水率、堆肥温度的依存关系,结合翻转式堆肥反应装置操作运行条件,对厨房垃圾好氧堆肥过程中堆温、含水率、有机物、微生物量及氧气消耗量等变化进行计算机模拟计算,并将模拟结果与堆肥实验结果进行对比。结果证明,除了由于反应装置保温不理想引起堆温和含水率二者有偏差外,总体模拟计算结果与实际堆肥结果基本吻合。另外还开展了利用所开发的模型进行堆肥通气优化的应用研究。模型计算结果表明当出口氧气控制在10%~18%时,采用间歇供氧,不仅能提高堆肥效率,而且可以使供氧时间减少40%以上。经过堆肥实验验证模拟结果是正确的。由此可见,利用模型模拟堆肥过程,快速优化堆肥方案是可行与有效的。  相似文献   

20.
In this study, sophisticated sensitivity analyses of a detailed ozone dry deposition model were performed for five soil types (sand, sandy loam, loam, clay loam, clay) and four land use categories (agricultural land, grass, coniferous and deciduous forests). Deposition velocity and ozone flux depend on the weather situation, physiological state of the plants and numerous surface-, vegetation-, and soil-dependent parameters. The input data and the parameters of deposition-related calculations all have higher or lower spatial and temporal variability. We have investigated the effect of the variability of the meteorological data (cloudiness, relative humidity and air temperature), plant-dependent (leaf area index and maximum stomatal conductance) and soil-dependent (soil moisture) parameters on ozone deposition velocity. To evaluate this effect, two global methods, the Morris method and the Monte Carlo analysis with Latin hypercube sampling were applied. Additionally, local sensitivity analyses were performed to estimate the contribution of non-stomatal resistances to deposition velocity. Using the Monte Carlo simulations, the ensemble effect of several nonlinear processes can be recognised and described. Based on the results of the Morris method, the individual effects on deposition velocity are found to be significant in the case of soil moisture and maximum stomatal conductance. Temperature and leaf area index are also important factors; the former is primarily in the case of agricultural land, while the latter is for grass and coniferous forest. The results of local sensitivity analyses reveal the importance of non-stomatal resistances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号