首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 842 毫秒
1.
为了探讨黄土高塬沟壑区水体氮污染的时空变化情况,选取黑河流域(泾河支流)为研究区域,测定2013—2014年枯水期和汛期流域地表水和地下水中主要离子及NO_3~--N和NH+4-N的浓度并进行分析.结果表明,黑河流域枯水期水化学主要为Na+K-Cl-SO_4型,汛期主要为CaMg-HCO_3型.枯水期及汛期阳离子均主要为Na+,阴离子在枯水期主要为SO_4~(2-)而汛期则转变为HCO_3~-.汛期NO_3~--N浓度普遍大于枯水期,平均值分别为2.37和1.63 mg·L~(-1);且空间分布不均衡,地表水中的浓度为:上游(1.35 mg·L~(-1))中游(1.05 mg·L~(-1))下游(0.93 mg·L~(-1)),而地下水中的浓度为:下游(3.84 mg·L~(-1))中游(2.54 mg·L~(-1))上游(2.35 mg·L~(-1)).NH_4~+-N在时间分布上没有明显的规律,汛期及枯水期变化不大,空间分布特征与NO_3~--N类似,但其整体浓度较低,在0.11 mg·L~(-1)左右波动,较为稳定均且未超过IV类水标准.水体中NO_3~--N不仅来自于农田氮肥的施入等人类活动,还可能来自于酸性降雨.地表水的NO_3~--N污染程度存在空间差异,上游污染程度大于中、下游,而超过70%的地下水水质属于良好,对当地饮用水安全暂不造成威胁.  相似文献   

2.
近几十年全球人口剧增,粮食生产及燃料消耗都增加了地表水中的氮负荷,而地表水是连接大陆氮库和海洋氮库的重要通道,地表水中的硝酸盐的增加将直接导致河口及沿海硝酸盐浓度的增加,因此研究近海河流的氮污染情况、确定影响因素将会为近海营养物质的控制及水环境管理提供重要信息.以环渤海地区的入海河流为主要研究对象,通过收集公开数据建立环渤海地表水硝酸盐数据库集成分析,研究入海河流的水体硝酸盐的时空污染特征及其与各影响因素之间的关系.结果表明,环渤海区域地表水中硝酸盐浓度的变化范围在0.0~76.4 mg·L~(-1),与溶解氧、总氮、总磷和电导率有显著的相关关系(p=0.01).在空间变化方面,黄河下游及浑太河上游流域硝酸盐污染较为严重.在除去来自城市污废水排放的人工河道带来的硝酸盐浓度异常值后,丰水期(平均浓度4.55 mg·L~(-1))与平水期(平均浓度5.39 mg·L~(-1))的硝酸盐浓度的平均水平较枯水期(平均浓度4.03 mg·L~(-1))更高,且浓度的变化范围(丰水期:0.00~34.90 mg·L~(-1);平水期:0.00~31.00 mg·L~(-1))亦大于枯水期(0.00~25.64 mg·L~(-1)).影响因素方面,硝酸盐浓度与降水量有显著相关性(r=0.122,p=0.01).土地利用相关性研究表明耕地与建设用地是硝酸盐的主要来源,林地和草地对硝酸盐污染有改善作用.硝酸盐的入海通量约为33.4×10~4t·a-1.  相似文献   

3.
高翔  左锐  郭学茹  孟利  刘鑫  王膑  滕彦国  王金生 《环境科学》2018,39(9):4086-4095
傍河开采已成为国际公认的新型安全的取水方式.本文以哈尔滨呼兰水源地为研究对象,采用地下水污染解析技术对枯丰水期水源地污染源结构和特征进行了刻画,在此基础上采用污染源-途径-受体模型进行了枯丰两季水源地区域污染风险评价,综合分析了季节变化条件和人类活动共同作用下对傍河水源地地下水水质安全的影响.结果表明,基于源解析的地下水污染源在枯丰季节里表现出不同的空间分布特征,主要受水源地开采引起的水-岩相互作用、原生地质影响下高Fe3+、Mn2+污染、人类活动影响下的氮污染和有机污染等共同作用;污染风险评价结果显示,在枯丰水期水源地均处于较低风险水平,其差异性体现在丰水期水源地南部呼兰河沿岸区域水质污染风险较高,枯水期高风险区主要分布于河岸周边及人类活动密集区,因此枯水期的人类活动对区域地下水污染风险影响大,是水源地综合污染管控的重点.  相似文献   

4.
汾河上中游流域水环境中多环芳烃分布及分配   总被引:1,自引:0,他引:1  
通过测定汾河上中游流域13个点位丰水期和枯水期水体、表层沉积物中PAHs浓度,分析其分布特征及影响因素.结果表明:汾河上中游流域丰水期和枯水期水中PAHs的平均浓度分别为0.365μg·L~(-1)和0.835μg·L~(-1),枯水期PAHs总体高于丰水期;丰水期和枯水期沉积物中PAHs平均浓度分别为1444μg·kg~(-1)和2407μg·kg~(-1),枯水期PAHs总体高于丰水期;水和沉积物中PAHs的组成主要是2~4环,但沉积物中高环PAHs组成显著高于水中;丰水期和枯水期中游段(寨上到南关)水体和沉积物中PAHs浓度整体均高于上游段(雷鸣寺到汾河水库).丰水期和枯水期沉积相-水相分配系数K_p值分别为642~32345 L·kg~(-1)和671~44929 L·kg~(-1),且随PAHs环数变大K_p值增大;丰水期和枯水期沉积相-水相实测的有机碳归一化分配系数(lgK_(oc))总体高于预测值上限;丰水期和枯水期lgK_(oc)与lgK_(ow)均呈较好的相关性,可决系数(R~2)分别为0.764、0.725,枯水期斜率大于丰水期斜率,枯水期较丰水期沉积物吸附的PAHs更多.K_p值与有机碳/COD_(Cr)比值K_(od)呈正相关,可决系数(R~2)分别为0.625和0.728,丰水期和枯水期PAHs K_p值受沉积物中有机碳含量和水中COD_(Cr)含量的影响.  相似文献   

5.
地形和植被会改变水分在土壤中的运移,进而影响土壤中硝态氮(NO_3~--N)的分布,并可能导致对水体污染的差异.在黄土高塬沟壑区黑河流域选取3个样点,采集刺槐林和草地在不同坡位(上、中和下坡位)的6 m深土样,分析了坡位和植被对NO_3~--N迁移的影响,并初步评估了其对地表水及地下水污染的潜在风险.不同坡位及植被条件下,土壤中硝态氮均没有出现累积,在表层土壤达到最大值后逐渐减小.2种植被下NO_3~--N达到稳定时的深度约为200 cm,稳定浓度均为下坡位上坡位中坡位,但在同一坡位的稳定浓度均有草地高于刺槐林的特点,说明坡位及植被覆盖类型均会影响NO_3~--N在土壤中的分布.整个流域地表水NO-3含量枯水期及汛期分别为(6.90±2.10)mg·L~(-1)和(5.84±2.86)mg·L~(-1),而坡地表层土壤(0~20 cm)中可移动态NO_3~-为(29.55±6.59)mg·L~(-1),明显大于地表水中的浓度,很有可能随径流流失造成地表水氮素污染.地下水枯水期和汛期的NO_3~-含量分别为(24.61±23.72)mg·L~(-1)和(15.70±10.78)mg·L~(-1),而坡地深层土壤(200 cm)中NO-3为(0.78±0.16)mg·L~(-1),由于浓度较低,对地下水造成污染的可能性较小.  相似文献   

6.
为探讨农村居民区沟塘水质对周边浅层地下水的影响,在河南省某县选择典型沟塘,分别在枯水期和丰水期采集沟塘水和周边浅层地下水样品,采用高效液相色谱检测16种多环芳烃(PAHs)的含量,分别描述并比较枯丰水期PAHs的污染特征及其生态与健康风险.结果表明,枯水期沟塘水中BaP含量、∑PAHs、TEQ(BaP)含量和致癌性PAHs占比分别为0.911ng/L、29.3ng/L、1.64ng/L和28.1%,均低于丰水期;浅层地下水中各指标分别为5.37ng/L、291ng/L、12.5ng/L和25.9%,高于丰水期.枯丰水期沟塘水和浅层地下水中PAHs均主要源于生物质和煤炭燃烧.浅层地下水PAHs的含量与沟塘水具有关联性,即距离沟塘越近,PAHs含量越高,枯水期的关联性低于丰水期.饮用浅层地下水致PAHs暴露的累积非致癌风险HQ为2.21x10-3;累积致癌风险R为1.56x10-6,72.0%成人R大于1x10-6,枯水期BaA、BbF和InP对成人致癌风险的贡献分别为72.1%、9.10%和4.80%.枯水期沟塘水PAHs总量为低等生态风险,丰水期为中等风险,不同沟塘其生态风险不同.纳污的C5沟塘水丰水期PAHs为高生态风险水平,BaA的贡献最大(占40.7%);纳污和养殖的A2枯水期和C3沟塘水丰水期PAHs为中等风险2水平.综上,沟塘水PAHs与周边浅层地下水具有关联性,枯水期沟塘水PAHs总量具有低生态风险,饮用周边浅层地下水的致癌风险高于1x10-6.  相似文献   

7.
铁岭市河流氮素时空分布及源解析   总被引:4,自引:2,他引:2  
杨丽标  雷坤  乔飞  孟伟 《环境科学》2018,39(2):711-719
研究了铁岭市22条河流氮素的时空分布特征,并对及其来源进行了解析.结果表明,研究期间总氮、硝态氮、铵态氮浓度的变化范围分别为1.26~18.85、0.53~11.8、0.3~15.7 mg·L~(-1),均值分别为(5.8±1.9)、(2.8±1.74)、(2.0±1.1)mg·L~(-1);硝态氮是氮素的主要赋存形态,占总氮比例为48%.时间尺度上,氮浓度表现出丰水期平水期枯水期的变化趋势.空间尺度上,以氨氮为评价指标,22条河流中有8条河流全年水质低于Ⅲ类水质;条子河和小清河污染比较严重,常年处于劣Ⅴ类水.西辽河、小河子河、辽河等河流水质相对较好.铁岭市河流硝酸盐δ15N值和δ18O值分别介于-3.0‰~23.9‰、-11.7‰~57‰.铁岭市河流氮的主要来源为人畜排泄物以及工业和生活废水;一些河流不同水期河流氮的来源有所差异;条子河、碾盘河丰水期河流氮主要来源于化肥和土壤氮,而枯水期主要来源于工业和生活污水.  相似文献   

8.
西苕溪支流河口水体营养盐的特征及源贡献分析   总被引:5,自引:3,他引:2  
陈诗文  袁旭音  金晶  李正阳  许海燕 《环境科学》2016,37(11):4179-4186
支流是干流营养物质的重要贡献源,也是流域水污染控制的关键区域.为探明西苕溪营养物质来源,有效控制该流域的水质污染,对西苕溪支流河口水质的时空变化特征及营养盐的输出通量进行了分析,利用PMF源解析模型对西苕溪10条典型支流的污染源贡献进行了定量解析.结果表明,中下游支流的TN、TP浓度高于上游支流,枯水期TN、TP浓度均值是4.25 mg·L~(-1)和0.11 mg·L~(-1),丰水期对应浓度均值为3.15 mg·L~(-1)和0.09 mg·L~(-1),枯水期高于丰水期,其时空变化较显著;支流水体的氮磷形态组成各不相同,反映支流流经区域周围土地利用的差异.污染源解析结果显示,影响西苕溪支流营养盐的污染源有农田径流、养殖废水和生活污水三类,在丰水期和枯水期,上游支流营养盐中农田径流的贡献率是40%和35%,中游养殖废水贡献率是33%和30%,而枯水期的生活污水则比丰水期贡献较多营养盐.因此,在整治改善西苕溪流域水质时,应考虑营养物的时空变化特点和支流周边环境.  相似文献   

9.
初次对江汉平原四湖流域上区地下水中多环芳烃(PAHs)的分布特征和来源进行研究,选择湖北潜江长湖-汉江一带9个典型地下水采样点分枯水期和丰水期进行采样,并利用气相色谱与质谱联用仪对16种优控PAHs进行定量分析.结果表明,研究区枯水期和丰水期地下水中PAHs的浓度变化范围分别为62.74~224.63 ng·L-1和55.86~115.15 ng·L-1,总体水平表现出枯水期高于丰水期,且分布于滨湖区域和近岸带的地下水中PAHs浓度较高.这些PAHs输入途径比较复杂,经用主成分分析法分析其来源,大致可归结为燃烧源,部分采样点有石油或石油燃烧的污染.研究区域地下水中PAHs浓度与国内某些地区相比,显示出较低的污染水平,但就致癌性PAHs来看,枯水期具有致癌性PAHs的浓度范围在19.32~153.39 ng·L-1之间,丰水期在16.30~64.22 ng·L-1之间,均已远远超出地下水中PAHs所允许的致癌浓度范围,这必然会对当地人类身体健康构成威胁.  相似文献   

10.
沙颍河流域典型癌病高发区水体硝态氮污染及健康风险   总被引:1,自引:0,他引:1  
分别在雨季和旱季对癌病高发区地表水和地下水进行采样分析,探讨该区域地表水和地下水NO~-_3-N和NO~-_2-N污染状况、季节变化和空间分布特点,以及相应的健康风险.结果表明,雨季地表水和地下水NO~-_3-N含量明显高于旱季.受污染沙颍河水的影响,沿岸癌病高发村庄饮水井雨季NO~-_3-N污染严重,平均含量达到38.32 mg·L~(-1),超标近3倍,而旱季则存在NO~-_2-N污染,平均含量达到0.69 mg·L~(-1).研究区癌病高发村庄居民存在饮水NO~-_3-N暴露的健康风险,其年平均健康总风险达到1.02×10~(-8) a~(-1),为其他村庄居民的6倍以上,饮水NO~-_3-N污染是癌病高发村庄居民的健康危害因素.  相似文献   

11.
河套灌区浅层地下水NO3--N时空变化及驱动因素   总被引:2,自引:2,他引:0  
为探明河套灌区地下水硝酸盐污染现状、时空演变特征和主要影响因素,选择乌拉特灌域为研究区,采用统计分析、 Piper三线图、相关分析和离子比值等方法,探究了该地区地下水硝酸盐质量浓度时空变化格局和主要驱动因素.结果表明,乌拉特灌域地下水氮素主要以NO-3-N为主,ρ(NO-3-N)存在极高值(60.00 mg·L-1),超标率达10.50%;时间分布:8月地下水ρ(NO-3-N)最高(平均值为6.61 mg·L-1), 10月(6.22 mg·L-1)和11月(6.25 mg·L-1)次之,3月(平均值为1.77 mg·L-1)最小,土壤中NO-3-N在降雨和灌溉驱动作用影响下,下渗至地下水,呈现出丰水期和灌溉集中期高于其它时期的特征;空间分布:灌域西南部(8.87 mg·L-1)&g...  相似文献   

12.
联合PMF模型与稳定同位素的地下水污染溯源   总被引:1,自引:1,他引:0  
张涵  杜昕宇  高菲  曾卓  程思茜  许懿 《环境科学》2022,43(8):4054-4063
基于传统水质监测与污染排放的污染源识别方法,存在监测频率与识别结果模糊等限制,难以实现污染源及迁移转化的准确量化.联合多元统计分析与稳定同位素技术,以成都平原典型混合用地区地下水污染为研究对象,提出利用正定矩阵因子分析(PMF)模型识别污染主控因子,减小环境因素对污染源判别的干扰,并基于水化学分析与土地利用构建贝叶斯稳定同位素混合模型,进一步量化不同污染源对地下水典型污染物硝酸盐氮(NO3-)的贡献率.结果表明,研究区地下水NO3-、NO2-、NH4+、Mn、Fe、SO42-和Cl-均存在不同程度超标,且具有空间异质性.地下水中"三氮"主要以NO3-为主,NO3-浓度在菜地的地下水中普遍偏高(平均值为9.29 mg·L-1),其次是在养殖场(平均值为7.66 mg·L-1)和耕地(平均值为7.09 mg·L-1),在工业区最低(平均值为2.20 mg·L-1).研究区地下水水质受原生地质作用、农业活动、水文地球化学演化、生活污染和工业污染的复合影响,且农业活动是研究区地下水NO3-增长的主要原因.研究区内农业区地下水NO3-的主要来源贡献为化肥(32%)和土壤氮(25%);工业区地下水NO3-的主要来源贡献为污水排放(28%)和大气降雨(27%).通过多元统计与稳定同位素技术的有机结合,有效识别了地下水污染来源及其贡献率,可为地下水污染源头防控提供科学依据.  相似文献   

13.
地下水硝态氮污染已成为一个全球性的问题,直接影响到人们的生活用水和身体健康.通过对海伦地区157口农村饮用水井取样分析,探讨了该地区地下水硝态氮污染的时空特征及其影响因素.结果表明,地下水中硝态氮平均含量14.01 mg·L-1,超标率(≥10.00 mg·L-1)达到26.11%.地下饮用水硝态氮的污染表现出明显的空间分异特征,在空间上地下水硝态氮污染程度从高到低依次为中部漫川漫岗农业区、东北丘陵漫岗农业区,西南平川漫岗农业区.在此基础上,从水井本身性质和污染物来源两方面分析了地下水硝态氮污染影响因素.在水井本身性质方面,水井管道材料不同导致地下水硝态氮受污染程度不同,其中单节管道水井的污染程度显著低于多节管道,平均浓度分别为5.08、 32.57 mg·L-1,超标率分布为12.26%、 82.35%;整个地区水井硝态氮污染程度与水井绝对深度无显著关系,但在28个同一取样单元,深水井污染程度显著低于浅水井,其中单节管深井、单节管浅井、多节管深井、多节管浅井的平均浓度分别为1.84、 12.02、 25.14、 45.61 mg·L-1.分析污染物来源可以发现,污染程度较高的地区多处于氮肥施用量较高、户均家禽牲畜量较多的地区,表明地下水硝态氮污染与化肥施用量以及家禽牲畜排泄量呈一定的正相关关系.  相似文献   

14.
苏永中  杨晓  杨荣 《环境科学》2014,35(10):3683-3691
在灌溉农田生态系统,土壤剖面中硝态氮(NO-3-N)的积累、分布、运移及地下水氮污染不仅受灌溉、施肥的影响,也与土壤质地有密切联系.本研究在黑河流域中游临泽平川绿洲设置了黑河河漫滩-老绿洲农田-新垦绿洲农田-绿洲外围固沙带一个监测断面10个观测井,对地下水NO-3-N含量进行连续监测,并对不同景观单元非饱和带土壤质地和NO-3-N含量进行了分析,对不同质地土壤NO-3-N在剖面的运移变化和氮淋溶损失进行监测.结果表明老绿洲农田,0~300 cm土层土壤质地的垂向分布为上层砂壤土,下层为壤土和黏壤土;而新垦沙地农田在土壤剖面中也有洪积黏土层出现,但0~300 cm不同土层砂粒含量均在80%以上;绿洲外围固沙带土壤在160 cm以下出现黏土层分布;土壤NO-3-N含量与黏粉粒含量呈显著相关,显著程度固沙带>新垦绿洲农田>老绿洲农田.土壤黏粉粒含量显著影响氮的淋溶.老绿洲农田区域,地下水NO-3-N含量变动在1.01~5.17 mg·L-1,平均2.65 mg·L-1;新垦沙地农田区域地下水NO-3-N含量变动在6.6~29.5 mg·L-1,平均20.8mg·L-1,2013年5~10月平均含量为26.5 mg·L-1,较2012年同期平均值上升了9.5 mg·L-1;绿洲外围固沙带地下水NO-3-N含量呈明显的增加趋势.地下水浅埋区非饱和带土壤质地是土壤NO-3-N淋溶损失和地下水NO-3-N污染的关键控制因子.边缘绿洲新垦沙地农田是地下水氮污染的脆弱带和高风险区域,实施有效降低地下水氮污染的种植模式及施肥和灌溉管理是区域生态农业需考虑的问题.  相似文献   

15.
岱海水体氮、磷时空分布特征及其差异性分析   总被引:5,自引:2,他引:3  
赵丽  陈俊伊  姜霞  郑朔方  王书航 《环境科学》2020,41(4):1676-1683
通过2018~2019年调查数据及历史相关监测资料,分析了岱海上覆水中氮、磷时空分布特征及主要影响因素,并探讨了氮形态、磷形态的时空分布差异性.结果表明,岱海上覆水总氮和总磷常年处于较高水平,尤其是总氮浓度明显高于全国其他湖泊.岱海上覆水总氮浓度在3.29~4.99 mg·L-1之间,平均值为(3.93±0.33) mg·L-1;总磷浓度在0.063~0.163 mg·L-1之间,平均值为(0.111±0.023) mg·L-1.上覆水中总氮和总磷浓度在春季、夏季呈现湖心深水区明显高于周边,秋季呈自东向西递减的趋势,而在冬季则呈现南部浅水区高于北部区域的趋势.上覆水中氮和磷营养盐均以溶解态为主,溶解态总氮和溶解态总磷占总氮和总磷的比例高达86.62%和77.84%,且溶解态氮以硝态氮为主导、溶解态磷则以有机磷为主要形态.研究中发现,湖水浓缩和内源营养盐释放是造成水体高总氮和总磷的主要原因,建议结合工程措施进行内源治理和生态修复,以防止水质进一步恶化.  相似文献   

16.
在作物生长期、收获期和收获后采集土壤、地下水和蔬菜样品,探讨癌病高发区土壤硝态氮对地下水和蔬菜硝酸盐积累的影响,以及由此引发的健康风险.结果表明,氮肥施用和灌溉是造成沿岸土壤、地下水和蔬菜硝酸盐积累的主要原因.受到河流氮污染影响,灌溉用水中氨氮和硝态氮经过灌溉-蒸发和淋溶过程的反复交替,向土壤和地下水迁移,引起土壤、地下水和蔬菜硝酸盐的积累.紧邻沙颍河的癌病高发村庄,土壤、地下水以及蔬菜硝态氮积累均明显高于全区平均水平.土壤在作物生长期和收获后分别达到149.01 mg·kg-1和31.70 mg·kg-1,其中多年菜地土壤硝态氮积累最为突出,分别达到276.44和68.26 mg·kg-1.作物生长期地下水硝态氮平均含量达38.32 mg·L-1,超标近3倍,叶菜类蔬菜硝酸盐平均含量高达3269.04 mg·kg-1,超出允许含量1倍以上.癌病高发村庄居民存在突出的饮水和蔬菜硝酸盐暴露健康风险.  相似文献   

17.
太湖内源营养盐负荷状况及其对上覆水水质的影响   总被引:7,自引:0,他引:7  
狄贞珍  张洪  单保庆 《环境科学学报》2015,35(12):3872-3882
以太湖沉积物-上覆水界面为研究对象,于2013年夏季采集46个样点的沉积物柱状样,分析表层沉积物孔隙水中营养盐(正磷酸盐、氨氮、硝氮)的浓度空间分布,估算表层沉积物中磷、氮的扩散通量,明确营养盐在沉积物-水界面的分布规律,以探明内源营养盐负荷对太湖上覆水的污染贡献,并为沉积物-水界面氮磷的转移过程理论补充证据.结果表明:太湖西北部区域的表层沉积物孔隙水中正磷酸盐和硝氮浓度较高,分别达到1.11 mg·L~(-1)和1.25 mg·L~(-1)以上;大部分湖区的氨氮浓度超过2 mg·L~(-1).全湖区范围内,从表层沉积物的上覆水到孔隙水,氨氮含量呈现升高趋势而硝氮含量呈现降低趋势.北部3个湖湾区的沉积物营养盐扩散通量最高,正磷酸盐为2.69~4.60 mg·m~(-2)·d~~(-1),氨氮为17.8~45.7 mg·m-2·d~(-1),而湖岸河口区是沉积物硝氮内源释放显著的区域.沉积物向上覆水释放正磷酸盐和氨氮的年内源污染负荷分别为64.6 t·a~(-1)和1756 t·a~(-1);而上覆水向沉积物汇入硝氮的年负荷为1102 t·a~(-1).氨氮的内源污染负荷与外源污染负荷之比高达18.7%,氨氮、总磷和总氮内源污染为上覆水贡献的浓度分别为0.361、0.013和0.134 mg·L~(-1),表明自由扩散带来的内源负荷会使太湖水中营养盐污染恶化,需引起重视.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号