首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The objective of this study was to quantify the effectiveness of different pretreated iron byproducts from the automotive industry to degrade DDT [(1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in aqueous solutions and soil slurry. Iron byproducts from automotive manufacturing were pretreated by three different methods (heating, solvent and 0.5N HCl acid washing) prior to experimentation. All pretreated irons were used at 5% (wt v-1) to treat 0.014 mM (5 mgL-1) of DDT in aqueous solution. Among the pretreated irons, acid pretreated iron results in the fastest destruction rates, with a pseudo first-order degradation rate of 0.364 d-1. By lowering the pH of the DDT aqueous solution from 9 to 3, destruction kinetic rates increase more than 20%. In addition, when DDT-contaminated soil slurry (3.54 mg kg-1) was incubated with 5% (wt v-1) acid-pretreated iron, more than 90% destruction of DDT was observed within 8 weeks. Moreover, DDT destruction kinetics were enhanced when Fe(II), Fe(III) or Al(III) sulfate salts were added to the soil slurry, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. These results provide proof-of concept that inexpensive iron byproducts of the automotive industry can be used to remediate DDT-contaminated water and soil.  相似文献   

2.

The objective of this study was to quantify the effectiveness of different pretreated iron byproducts from the automotive industry to degrade DDT [(1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in aqueous solutions and soil slurry. Iron byproducts from automotive manufacturing were pretreated by three different methods (heating, solvent and 0.5N HCl acid washing) prior to experimentation. All pretreated irons were used at 5% (wt v? 1) to treat 0.014 mM (5 mgL? 1) of DDT in aqueous solution. Among the pretreated irons, acid pretreated iron results in the fastest destruction rates, with a pseudo first-order degradation rate of 0.364 d? 1. By lowering the pH of the DDT aqueous solution from 9 to 3, destruction kinetic rates increase more than 20%. In addition, when DDT-contaminated soil slurry (3.54 mg kg? 1) was incubated with 5% (wt v? 1) acid-pretreated iron, more than 90% destruction of DDT was observed within 8 weeks. Moreover, DDT destruction kinetics were enhanced when Fe(II), Fe(III) or Al(III) sulfate salts were added to the soil slurry, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. These results provide proof-of concept that inexpensive iron byproducts of the automotive industry can be used to remediate DDT-contaminated water and soil.  相似文献   

3.
Zhou H  He Y  Lan Y  Mao J  Chen S 《Chemosphere》2008,72(6):870-874
The removal of Cr(VI) by zero-valent iron (Fe(0)) and the effect of three complex reagents, ethylenediaminetetraacetic acid (EDTA), NaF and 1,10-phenanthroline, on this reaction were investigated using batch reactors at pH values of 4, 5 and 6. The results indicate that the removal of Cr(VI) by Fe(0) is slow at pH 5.0 and that three complex reagents play different roles in the reaction. EDTA and NaF significantly enhance the reaction rate. The zero-order rate constants at pH 5.0 were 5.44 microM min(-1) in the presence of 4mM EDTA and 0.99 micrM min(-1) in the presence of 8 mM NaF, respectively, whereas that of control was only 0.33 micrM min(-1), even at pH=4.0. This enhancement is attributed to the formation of complex compounds between EDTA/NaF and reaction products, such as Cr(III) and Fe(III), which eliminate the precipitates of Cr(III), Fe(III) hydroxides and Cr(x)Fe(1-)(x)(OH)(3) and thus reduce surface passivation of Fe(0). In contrast, 1,10-phenanthroline, a complex reagent for Fe(II), dramatically decreases Cr(VI) reduction by Fe(0). At pH=4.0, the zero-order rate constant in the presence of 1mM of 1,10-phenanthroline was 0.02 micrM min(-1), decreasing by 99.7% and 93.9%, respectively, compared with the results in the presence and absence of EDTA. The results suggest that a pathway of the reduction of Cr(VI) to Cr(III) by Fe(0) may involve dissolution of Fe(0) to produce Fe(II), followed by reduction of Cr(VI) by Fe(II), rather than the direct reaction between Cr(VI) and Fe(0), in which Fe(0) transfers electrons to Cr(VI).  相似文献   

4.
Redox reactions in the Fe-As-O2 system   总被引:1,自引:0,他引:1  
Johnston RB  Singer PC 《Chemosphere》2007,69(4):517-525
We have examined two redox reactions involving arsenic and iron at near-neutral pH: the reduction of As(V) by Fe(II) under anoxic conditions, and the co-oxidation of As(III) during Fe(II) oxygenation. We also considered the impact of goethite, pH buffers, and radical scavengers on these reactions. In a series of anoxic experiments, Fe(II) was found to reduce As(V) in the presence of goethite, but not in homogeneous solution. The reaction rate increased with increasing pH and Fe(II) concentration, but in all cases was relatively slow. In aerobic experiments, the kinetics of Fe(II) oxygenation at neutral pH, and the corresponding oxidation of As(III) were found to depend heavily on pH buffer type and concentration. The classic formulation of Fe(II) oxidation by oxygen, involving four single-electron transfers, was reviewed and found to be inadequate for explaining observed oxidation of Fe(II) and As(III). Widely cited rate constants for Fe(II) oxygenation originate from experiments conducted in carbonate buffer, and do not match observations made in phosphate, MES, or HEPES systems. In phosphate buffer, Fe(II) oxidation is rapid and dependent on phosphate concentration. In MES and HEPES buffers, Fe(II) oxidation is much slower due to the lack of labile ferrous iron species. Oxygenation of Fe(II) appears to proceed through different mechanisms in phosphate and MES or HEPES systems. In both cases, reactive intermediary species are produced which can oxidize As(III). These oxidants are not the hydroxyl radical, but may be Fe(IV) species.  相似文献   

5.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2 mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions.  相似文献   

6.
Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTA < 1:1), contrasting with the rapid oxidation of Fe(II) by O2 and H2O2 at neutral pH under the same conditions. However, partial oxidation of As(III) was observed at a 2:1 ratio of Fe(II):EDTA. Rapid Fe(II) oxidation in the presence of organic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.  相似文献   

7.
Jung Y  Choi J  Lee W 《Chemosphere》2007,68(10):1968-1975
The reduction of Cr(VI) to Cr(III) by magnetite in the presence of added Fe(II) was characterized through batch kinetic experiments and the effect of Fe(II) addition and pH were investigated in this study. The addition of Fe(II) into magnetite suspension improved the reductive capacity of magnetite. Eighty percent of Cr(VI) was reduced by magnetite (6.5 g l(-1)) with Fe(II) (80 mg l(-1)) within 1 h, while 60% of Cr(VI) was removed by magnetite only. However, the extent of improved reductive capacity of magnetite with Fe(II) was less than that predicted by the summation of each reduction capacity of magnetite and Fe(II). The reduction of Cr(VI) in the magnetite suspension with Fe(II) increased with the increase of molar ratio of Fe(II) to Cr(VI) (0.6, 1, 1.5, 2.3) in the range of 0-2.3 and with the decrease of pH in the range of pH 8.0-5.5. The speciation of chromium, iron, and oxygen on the surface of magnetite was investigated by X-ray photoelectron spectroscopy. Cr 2p3/2, Fe 2p3/2, and O 1s peaks were mainly observed at 576.7 and 577.8 eV, at 711.2 eV, and at 530.2 and 531.4 eV, respectively. The results indicates that Cr(III) and Fe(III) were the dominant species on the surface of magnetite after reaction and that the dominant species covered the magnetite surface and formed metal (oxy)hydroxide.  相似文献   

8.
Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO(4) reduction processes. The effects of these reactions on the aqueous- and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)- and SO(4)-reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO(4) in the influent to render the reduction of this species unimportant to the geochemical processes in the column.The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO(3(S))).In the column where significant SO(4) reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO(4) reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO(3(S))). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction.The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO(4) was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. Compared to this pathway, precipitation as FeS did not constitute an important sink for S(-II) in column 2. In this column, the total reacted S(-II) estimated from the concentration of dissolved sulfur species was in good agreement with the produced Cr(II)-reducible sulfur in the solid phase. Solid-phase analysis of the sulfur species indicated that up to half of the originally produced FeS may have possibly transformed to FeS(2).  相似文献   

9.
Experimental in situ chemical peroxidation of atrazine in contaminated soil   总被引:4,自引:0,他引:4  
Mecozzi R  Di Palma L  Merli C 《Chemosphere》2006,62(9):1481-1489
Lab-scale experiments of in situ chemical oxidation (ISCO), were performed on soil contaminated with 100 mg kg(-1) of atrazine (CIET). The oxidant used was hydrogen peroxide catalysed by naturally occurring minerals or by soluble Fe(II) sulphate, added in aqueous solution. The oxidation conditions were: CIET:H2O2=1:1100, 2 PV or 3 PV reaction volume, Fe(II):H2O2=0, 1:22, 1:11. Stabilized (with KH2PO4 at a concentration of 16 g l(-1)) or non-stabilized hydrogen peroxide was used. The pH of the reagents was adjusted to pH=1 with sulphuric acid, or was not altered. Results showed that the addition of soluble Fe(II) increased the temperature of the soil slurry and the use of stabilized hydrogen peroxide resulted in a lower heat generation. The treatment reduced the COD of the soil of about 40%, pH was lowered and natural organic matter became less hydrophobic. The highest atrazine conversion (89%) was obtained in the conditions: 3 PV, Fe(II):H2O2=1:11 with stabilized hydrogen peroxide added in two steps. The stabilizer only increased H2O2 life-time significantly when soluble Fe(II) was added. Results indicate as preferential degradation pathway of atrazine in soil dechlorination instead of dealkylation.  相似文献   

10.
Maas Pv  Brink Pv  Klapwijk B  Lens P 《Chemosphere》2009,75(2):243-249
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.  相似文献   

11.
Onsite wastewater systems, or septic tanks, serve approximately 25% of the United States population; they are therefore a critical component of the total carbon balance for natural water bodies. Septic tanks operate under strictly anaerobic conditions, and fermentation is the dominant process driving carbon transformation. Nitrate, Fe(III), and sulfate reduction may be operating to a limited extent in any given septic tank. Electron acceptor amendments will increase carbon oxidation, but nitrate is toxic and sulfate generates corrosive sulfides, which may damage septic system infrastructure. Fe(III) reducing microorganisms transform all major classes of organic carbon that are dominant in septic wastewater: low molecular weight organic acids, carbohydrate monomers and polymers, and lipids. Fe(III) is not toxic, and the reduction product Fe(II) is minimally disruptive if the starting Fe(III) is added at 50–150 mg L?1. We used 14C radiolabeled acetate, lactate, propionate, butyrate, glucose, starch, and oleic acid to demonstrate that short and long-term carbon oxidation is increased when different forms of Fe(III) are amended to septic wastewater. The rates of carbon mineralization to 14CO2 increased 2–5 times (relative to unamended systems) in the presence of Fe(III). The extent of mineralization reached 90% for some carbon compounds when Fe(III) was present, compared to levels of 50–60% in the absence of Fe(III). 14CH4 was not generated when Fe(III) was added, demonstrating that this strategy can limit methane emissions from septic systems. Amplified 16S rDNA restriction analysis indicated that unique Fe(III)-reducing microbial communities increased significantly in Fe(III)-amended incubations, with Fe(III)-reducers becoming the dominant microbial community in several incubations. The form of Fe(III) added had a significant impact on the rate and extent of mineralization; ferrihydrite and lepidocrocite were favored as solid phase Fe(III) and chelated Fe(III) (with nitrilotriacetic acid or EDTA) as soluble Fe(III) forms.  相似文献   

12.
Arsenic oxidation (As(III) to As(V)) and As(V) removal from water were assessed by using TiO2 immobilized in PET (polyethylene terephthalate) bottles in the presence of natural sunlight and iron salts. The effect of many parameters was sequentially studied: TiO2 concentration of the coating solution, Fe(II) concentration, pH, solar irradiation time; dissolved organic carbon concentration. The final conditions (TiO2 concentration of the coating solution: 10%; Fe(II): 7.0 mg l−1; solar exposure time: 120 min) were applied to natural water samples spiked with 500 μg l−1 As(III) in order to verify the influence of natural water matrix. After treatment, As(III) and total As concentrations were lower than the limit of quantitation (2 μg l−1) of the voltammetric method used, showing a removal over 99%, and giving evidence that As(III) was effectively oxidized to As(V). The results obtained demonstrated that TiO2 can be easily immobilized on a PET surface in order to perform As(III) oxidation in water and that this TiO2 immobilization, combined with coprecipitation of arsenic on Fe(III) hydroxides(oxides) could be an efficient way for inorganic arsenic removal from groundwaters.  相似文献   

13.
Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions   总被引:1,自引:0,他引:1  
Zhong L  Yang J 《Chemosphere》2012,86(10):973-978
Detoxification of Cr(VI) through reduction by organic reductants has been regarded as an effective way for remediation of Cr(VI)-polluted soils. However, such remediation strategy would be limited in practical applications due to the low Cr(VI) reduction rate. In this study, the catalytic effect of two Fe-rich soils (Ultisol and Oxisol) on Cr(VI) reduction by malic acid was evaluated. As the results shown, the two soils could obviously accelerate the reduction of Cr(VI) by malic acid at low pH conditions, while such catalytic effect was gradually suppressed as the increase in pH. After reaction for 48 h at pH 3.2, Oxalic acid was found in the supernatant of Ultisol, suggesting the oxidization of hydroxyl in malic acid to carboxyl and breakage of the bond between C2 and C3. It was also found that the catalytic reactivity of Ultisol was more significant than that of Oxisol, which could be partly attributed to the fact that the amount of Fe(II) released from the reductive dissolution of Ultisol by malic acid was larger than that of Oxisol. With addition of Al(III), the catalytic effect from Ultisol was inhibited across the pH range examined. On the contrary, the presence of Cu(II) would increase the catalytic effect of Ultisol, which was more pronounced with the increase in pH. This study proposed a potential way for elimination of the environmental risks posed by the Cr(VI) contamination by use of the natural soil surfaces to catalyze Cr(VI) reduction by the organic reductant such as malic acid, a kind of organic reductant originating from soil organic decomposition process or plant excretion.  相似文献   

14.
Kim HS  Kang WH  Kim M  Park JY  Hwang I 《Chemosphere》2008,73(5):813-819
Reactive reductants of cement/Fe(II) systems in dechlorinating chlorinated hydrocarbons are unknown. This study initially evaluated reactivities of potential reactive agents of cement/Fe(II) systems such as hematite (alpha-Fe(2)O(3)), goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), akaganeite (beta-FeOOH), ettringite (Ca(6)Al(2)(SO(4))(3)(OH)(12)), Friedel's salt (Ca(4)Al(2)Cl(2)(OH)(12)), and hydrocalumite (Ca(2)Al(OH)(6)(OH).3H(2)O) in reductively dechlorinating trichloroethylene (TCE) in the presence of Fe(II). It was found that a hematite/Fe(II) system shows TCE degradation characteristics similar to those of cement/Fe(II) systems in terms of degradation kinetics, Fe(II) dose dependence, and final products distribution. It was therefore suspected that Fe(III)-containing phases of cement hydrates in cement/Fe(II) systems behaved similarly to the hematite. CaO, which was initially introduced as a pH buffer, was observed to participate in or catalyze the formation of reactive reductants in the hematite/Fe(II) system, because its addition enhanced the reactivities of hematite/Fe(II) systems. From the SEM (scanning electron microscope) and XRD (X-ray diffraction) analyses that were carried out on the solids from hematite/Fe(II) suspensions, it was discovered that a sulfate green rust with a hexagonal-plate structure was probably a reactive reductant for TCE. However, SEM analyses conducted on a cement/Fe(II) system showed that hexagonal-plate crystals, which were presumed to be sulfate green rusts, were much less abundant in the cement/Fe(II) than in the hematite/Fe(II) systems. It was not possible to identify any crystalline minerals in the cement/Fe(II) system by using XRD analysis, probably because of the complexity of the cement hydrates. These observations suggest that major reactive reductants of cement/Fe(II) systems may differ from those of hematite/Fe(II) systems.  相似文献   

15.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

16.
Remediating dicamba-contaminated water with zerovalent iron   总被引:1,自引:0,他引:1  
Dicamba (3,6-dichloro-2-methoxybenzoicacid) is a highly mobile pre- and post-emergence herbicide that has been detected in ground water. We determined the potential of zerovalent iron (Fe0) to remediate water contaminated with dicamba and its common biological degradation product, 3,6-dichlorosalicylic acid (DCSA). Mixing an aqueous solution of 100 microM dicamba with 1.5% Fe0 (w/v) resulted in 80% loss of dicamba within 12 h. Solvent extraction of the Fe0 revealed that dicamba removal was primarily through adsorption; however when the Fe0 was augmented with Al or Fe(III) salts, dicamba was dechlorinated to an unidentified degradation product. In contrast to dicamba, Fe0 treatment of DCSA resulted in removal with some dechlorination observed. When DCSA was treated with Fe0 plus Al or Fe(III) salts, destruction was 100%. Extracts of this Fe0 treatment contained the same HPLC degradation peak observed with the Fe0 + Al or Fe(III) salt treatment of dicamba. Molecular modeling suggests that differences in removal and dechlorination rates between dicamba and DCSA may be related to the type of coordination complex formed on the iron surface. Experiments with 14C-labeled dicamba confirmed that Fe-adsorbed dicamba residues are available for subsequent biological mineralization (11% after 125 d). These results indicate that Fe0 could be potentially used to treat dicamba and DCSA-contaminated water.  相似文献   

17.
微生物的异化Fe(Ⅲ)还原是一种能够利用Fe(III)作为末端电子受体在无氧条件下氧化有机物的产能过程。结合这一特性,考察了在兼性厌氧/严格厌氧条件下Fe^0钝化膜作为Fe(111)源时的生物还原能力以及对N、P等营养元素的去除效果。结果表明,严格厌氧条件下微生物异化Fe(Ⅲ)还原能力较好,富集培养至7d,累计Fe(II)浓度达到最大,最大产生速率为98.69mg/(L·d),同时TP去除率高达97.1%以上。而体系对NH4-N、TN的去除相对滞后,培养至13d,去除率开始增大,最终分别达到86.6%和76.1%。这为装填有海绵铁+聚氨酯泡沫载体的SBBR中填料的原位再生问题提供了解决思路。  相似文献   

18.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   

19.
Xu X  Chang SG 《Chemosphere》2007,67(8):1628-1636
The addition of metal chelates such as Fe(II)EDTA or Fe(II)Cit to wet flue gas desulfurization systems has been shown to increase the amount of NO(x) absorption from gas streams containing SO(2). This paper attempts to demonstrate the advantage of not only using Fe(II)Cit chelate to absorb nitrogen oxides from flue gas but also the advantage gained from adding microorganisms to the system. Two distinct classes of microorganisms are needed: denitrifying and iron-reducing bacteria. The presence of oxygen in flue gas will affect the absorption efficiency of NO by Fe(II)Cit chelate. The oxidation of Fe(II) can be slowed with the help of bacteria in two ways: bacteria can serve to directly reduce Fe(III) to Fe(II) or they can serve to keep levels of dissolved oxygen in the solution low. As a result, after NO absorption, Fe(II)(Cit)NO will be reduced by denitrifying bacteria to Fe(II)Cit while Fe(III) is reduced by anaerobic bacteria back to Fe(II). Our experiments have shown that the implementation of our protocol allowed for an NO reduction rate constant increase from standard levels of 0.0222-0.100 m Mh(-1) with inlet NO changed from 250 to 1000 ppm. We have also found that total Fe concentration tends to decrease after prolonged periods of operation due to the loss of some Fe to the formation of Fe(OH)(3) that settles together with the sludge at the bottom of bioreactor tank.  相似文献   

20.
Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor   总被引:1,自引:0,他引:1  
Chung J  Li X  Rittmann BE 《Chemosphere》2006,65(1):24-34
Arsenate (As(V)) is a carcinogen and a significant problem in groundwater in many parts of the world. Since As(III) is generally more mobile and more toxic than As(V), the reduction of As(V) to As(III) is not a conventional treatment goal. However, reducing As(V) to As(III) may still be a means for decontamination, because As(III) can be removed from solution by precipitation or complexation with sulfide or by adsorption to Fe(II)-based solids. A promising approach for reducing oxidized contaminants is the H2-based membrane biofilm reactor (MBfR). In the case of arsenate, the MBfR allows bio-reduction of As(V) to As(III) and sulfate to sulfide, thereby giving the potential for As removal, such as by precipitation of As2S3(s) or formation of Fe(II)-based solids. When As(V) was added to a denitrifying MBfR, As(V) was reduced immediately to As(III). Decreasing the influent sulfate loading increased As(V) reduction for a fixed H2 pressure. A series of short-term experiments elaborated on how As(V) loading, nitrate and sulfate loadings, and H2 pressure controlled As(V) reduction. Lower nitrate loading and increased As(V) loading increased the extent of As(V) reduction, but increased H2 pressure did not increase As(V) reduction. As(V) reduction was sensitive to sulfate loading, with a maximum As(V)-removal percentage and flux with no addition of sulfate. As(III) could be precipitated with sulfide or adsorbed to Fe(II) solids, which was verified by scanning electron microscopy and energy dispersive X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号