首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.  相似文献   

2.
Soil acidification, caused by elevated anthropogenic deposition, has led to concerns over nutrient imbalances in Ontario's sugar maple (Acer saccharum Marsh.) forests. In this study, soil chemistry, foliar chemistry, crown condition, and tree growth were measured at 36 sugar maple stands that included acidic (pH?相似文献   

3.
Fly ash (FA) from coal-burning industries may be a potential inorganic soil amendment; the insight of its nutrient release and supply to soil may enhance their agricultural use. The study was conducted to assess the ability of fly ash (a coal fired thermal plant waste) to reduce soil fertility depletion and to study bioaccumulation of mineral nutrients in Jatropha curcas grown on soils amended with fly ash. Fly ash was amended to field soil at six rates (0, 5, 10, 20, 40, and 70 % w/w) on which J. curcas was grown. After 8 months of growth, the height of jatropha plants was significantly increased at 5 and 10 % FA-amended soil, whereas, biomass significantly increased at 5, 10, and 20 % FA-amended soil compared to control soil (0 % FA). Leaf nutrients uptake, followed by stems and roots uptake were highly affected by fly ash amendment to soil. Most of nutrients accumulation were increased up to 20 % fly ash and decreased thereafter. The results of available nutrient analysis of soil revealed that availability of nitrogen, potassium, sulfur, copper, iron, mangnese, and zinc declined significantly at higher levels of fly ash amendments, whereas, availability of phosphorus increased at these levels. However, pH, organic carbon, and available boron were not influenced significantly by fly ash amendment to soil. Microbial biomass C, N, and ratio of microbial-C to organic C were significantly reduced at 20 % fly ash and higher amounts. This study revealed that J. curcas plants could gainfully utilize the nutrients available in fly ash by subsequently amending soil.  相似文献   

4.
A main objective of restoration and afforestation at post-mining sites is establishing a long-term sustainable ecosystem which depends on adaptations of tree species and which in turn depends on the soil nutrient flux. The nutrient concentration (nitrogen (N), P, K, Ca, Mg, and sulfur (S)) of Scots pine needles was investigated in reclaimed mine soils (RMS) located at the following post-mining sites: a sand mine pit, spoil heap from a lignite mine, spoil heap from a S mine, and a carbonaceous spoil heap from an underground coal mine. The control plots were arranged on natural forest sites adjacent to the post-mining sites. A higher level of foliar nutrients was noted in the carbonaceous RMS, while lower levels were found in RMS on the spoil heap following lignite mining. The characteristics of the substrate were found to exert greater effect than mineral fertilization (performed at the onset of reclamation) on the tree stand characteristics, needle length and foliar nutrient concentration. While the soils and trees were most deficient in N, negative symptoms have not been noted to this date in tree stands at reclaimed mine sites. Trophic ratings were recommended based on statistical correlations and groupings between N and P contents in needles and needles length (mean length of 300 needles) while nutrient ratings were recommended from statistical differences and groupings of the RMS substrates.  相似文献   

5.
Red pine (Pinus resinosa Ait.) is rare (< 15 000 mature trees) in Newfoundland and is known from only 22 locations in the central region. Red pine occupies 3 major site types in Newfoundland: 1) red pine on medium-textured sands (RP1), 2) red pine on coarse-textured glaciofluvial deposits (RP2), and 3) red pine on Folisols over bedrock (RP3). The succession of red pine site types after cutting is from red pine to Kalmia-black spruce (Picea mariana (Mill.) B.S.P.) for RP1, and to Cladonia-Kalmia-black spruce for types RP2 and RP3. Succession after fire is usually to the pre-fire type, but this depends on the severity of the fire.Although occupying a relatively poor site, red pine at 60–70 years reaches heights in excess of 18 m, dbh in excess of 40 cm, and individual tree volumes greater than 1 m3 were recorded in 75 stemanalyzed fire-killed trees. Black spruce on that same site produces less than one-third that volume in 60 years. Merchantable volume of 140–280 m3 ha-1 were recorded i.e., Canada Land Inventory (CLI) forest capability class 5 and class 4 ratings. This raises the CLI rating two capability classes if red pine were occupying these poor quality sites over black spruce. In terms of nutrition, even the best growing red pine are nitrogen (N) deficient as shown by foliar analysis. All natural stands have foliar N concentrations below 1.3% which is the critically low level shown in the literature. Immediately after fire, foliar concentrations reach this level but are usually about 1% or less. Most other nutrients are low but are within the generally reported adequate levels in testing for P, K, Ca and Mg.Fire influences soil nutrient availability as pH increases in the RP1 type. Burning temperature also affects soil pH and the understory vegetation. The RP2 type loses more N in hotter burns on this site type and more N is tied up in these ortstein hardpan soils. The pattern of regeneration following wildfire is related to slope, density, age and species mixture of the stand as well as the thickness and composition of the duff layer.  相似文献   

6.
Revegetation and ecological restoration of a Mn mineland are important concerns in southern China. To determine the major constraints for revegetation and select suitable plants for phytorestoration, pedological and botanical characteristics of a Mn mine in Guangxi, southern China were investigated. All the soils were characterized by low pH and low nitrogen and phosphorus levels except for the control soil, suggesting that soil acidity and poor nutrition were disadvantageous to plant growth. In general, the studied mine soils had normal organic matter (OM) and cation exchange capacity (CEC). However, OM (8.9 g/kg) and CEC (7.15 cmol/kg) were very low in the soils from tailing dumps. The sandy texture and nutrient deficiency made it difficult to establish vegetation on tailing dumps. Mn and Cd concentrations in all soils and Cr and Zn concentrations in three soils exceeded the pollution threshold. Soil Mn and Cd were above phytotoxic levels, indicating that they were considered to be the major constraints for phytorestoration. A botanical survey of the mineland showed that 13 plant species grew on the mineland without obvious toxicity symptoms. High Mn and Cd concentrations have been found in the aerial parts of Polygonum pubescens, Celosia argentea, Camellia oleifera, and Solanum nigrum, which would be interesting for soil phytoremediation. Miscanthus floridulus, Erigeron acer, Eleusina indica, and Kummerowia striata showed high resistance to the heavy metal and harsh condition of the soils. These species could be well suited to restore local degraded land in a phytostabilization strategy.  相似文献   

7.
Wastewater sludges are used in agriculture as soil amendment and fertilizer, with regard to their organic matter and nutrient content. However, availability of nitrogen and phosphorus from sludge-amended soils and their transfer in runoff may lead to eutrophication of downstream surface water. The aim of this study is to establish and compare the effect of two different sludges on these transfers: an anaerobically digested and thermically stabilised sludge (Seine-Aval treatment plant, sludge no. 1), and a limed sludge (Saint-Quentin treatment plant, sludge no. 2). Experiments were performed on 12 sloping micro-plots (1 m × 1 m) submitted to sludge spreading and controlled rainfall simulation. Runoff water was sampled and analysed for concentrations in nitrogen species and phosphorus. Results show that spreading of sludge no. 1 increased both ammonium nitrogen (mean of 1.1 mg L–1 N-NH4 vs. 0.2 mg L–1 N-NH4 for control micro-plots) and particulate phosphorus concentrations (mean of 2 mg L–1 P vs. 1.1 mg L–1 P for control micro-plots) in runoff water. On the other hand, sludge no. 2 did not induce any significant effect on nutrient concentrations in runoff. These results are related to chemical composition and physical treatment of sludges. This study underlines the existence of a short-term risk of nutrient mobilisation by runoff after sludge spreading on soil, and the need to check precisely the impact of this practice on water quality.  相似文献   

8.
Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh < 200 mV), with a neutral pH and low concentration in toxic metals; nevertheless, they varied widely in the soil and its quality-defining parameters (e.g., clay contents, total organic carbon, Fe, Al, toxic trace metals). It is noteworthy that the mangroves presented a low FePyrite content due to a limitation in the Fe oxyhydroxide contents, especially in soils with higher organic C content (TOC > 15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.  相似文献   

9.
Atmospheric deposition of nitrogen (N) and sulfur (S) containing compounds affects soil chemistry in forested ecosystems through (1) acidification and the depletion of base cations, (2) metal mobilization, particularly aluminum (Al), and iron (Fe), (3) phosphorus (P) mobilization, and (4) N accumulation. The Bear Brook Watershed in Maine (BBWM) is a long-term paired whole-watershed experimental acidification study demonstrating evidence of each of these acidification characteristics in a northeastern U.S. forested ecosystem. In 2003, BBWM soils were studied using the Hedley fractionation procedure to better understand mechanisms of response in soil Al, Fe, and P chemistry. Soil P fractionation showed that recalcitrant P was the dominant fraction in these watersheds (49%), followed by Al and Fe associated P (24%), indicating that a majority of the soil P was biologically unavailable. Acidification induced mobilization of Al and Fe in these soils holds the potential for significant P mobilization. Forest type appears to exert important influences on metal and P dynamics. Soils supporting softwoods showed evidence of lower Al and Fe in the treated watershed, accompanied by lower soil P. Hardwood soils had higher P concentrations in surface soils as a result of increased biocycling in response to N additions in treatments. Accelerated P uptake and return in litterfall overshadowed acidification induced P mobilization and depletion mechanisms in hardwoods.  相似文献   

10.
Surface disturbances: Their role in accelerating desertification   总被引:19,自引:0,他引:19  
Maintaining soil stability and normal water and nutrient cycles in desert systems is critical to avoiding desertification. These particular ecosystem processes are threatened by trampling of livestock and people, and by off-road vehicle use. Soil compaction and disruption of cryptobiotic soil surfaces (composed of cyanobacteria, lichens, and mosses) can result in decreased water availability to vascular plants through decreased water infiltration and increased albedo with possible decreased precipitation. Surface disturbance may also cause accelerated soil loss through wind and water erosion and decreased diversity and abundance of soil biota. In addition, nutrient cycles can be altered through lowered nitrogen and carbon inputs and slowed decomposition of soil organic matter, resulting in lower nutrient levels in associated vascular plants. Some cold desert systems may be especially susceptible to these disruptions due to the paucity of surface-rooting vascular plants for soil stabilization, fewer nitrogen-fixing higher plants, and lower soil temperatures, which slow nutrient cycles. Desert soils may recover slowly from surface disturbances, resulting in increased vulnerability to desertification. Recovery from compaction and decreased soil stability is estimated to take several hundred years. Re-establishment rates for soil bacterial and fungal populations are not known. The nitrogen fixation capability of soil requires at least 50 years to recover. Recovery of crusts can be hampered by large amounts of moving sediment, and re-establishment can be extremely difficult in some areas. Given the sensitivity of these resources and slow recovery times, desertification threatens million of hectares of semiarid lands in the United States.  相似文献   

11.
Physico-chemical analysis of soil samples at an oil spill site in the Niger Delta Area of Nigeria showed that the total hydrocarbon content of top soil layers ranged from 0.8 to 12.4 ppm in the heavy impact zone and the oil had penetrated to a depth of 7.2 m. Hydrocarbon concentration in the medium impact zone ranged from 0.02 to 0.40 ppm while hydrocarbons were not detected in 75% of samples from the unimpacted reference zone. Measurement of heavy metal concentrations in the soils revealed a significant build-up (p<0.05) of lead, iron and zinc in the heavy impact zone. Other parameters including electrical conductivity, exchangeable cations, available phosphorus and total nitrogen in impacted soils were comparatively low while the total organic carbon was high, compared with the reference site. Textural class of soil from the different depths showed a predominantly brown sand at the top soil, loamy sand at medium depths and grey coarse sand at greater depths.  相似文献   

12.
Acidic deposition leads to the acidification of waters and accelerated leaching and depletion of soil base cations. The Bear Brook Watershed in Maine has used whole-watershed chemical manipulations to study the effects of elevated N and S on forest ecosystem function on a decadal time scale. The objectives of this study were to define the chemical and physical characteristics of soils in both the reference and treated watersheds after 17 years of treatment and assess evidence of change in soil chemistry by comparing soil studies in 1998 and 2006. Results from 1998 confirmed depletion of soil base cation pools and decreased pH due to elevated N and S within the treated watershed. However, between 1998 and 2006, during a period of declining SO $_{4}^{\,\,2-}$ deposition and continued whole-watershed experimental acidification on the treated watershed, there was little evidence of continued soil exchangeable base cation concentration depletion or recovery. The addition of a pulse of litterfall and accelerating mineralization from a severe ice storm in 1998 may have had significant effects on forest floor nutrient pools and cycling between 1998 and 2006. Our findings suggest that mineralization of additional litter inputs from the ice storm may have obscured temporal trends in soil chemistry. The physical data presented also demonstrate the importance of coarse fragments in the architecture of these soils. This study underscores the importance of long-term, quantitative soil monitoring in determining the trajectories of change in forest soils and ecosystem processes over time.  相似文献   

13.
Foliar Cd and Zn concentrations of hybrid poplars commonlyplanted on sediment-derived soils were assessed in field circumstances. Selected sites covered a range of soil types andplantation characteristics. Reference data for foliar concentrations were established from samples taken in a tree-nursery. Even in the reference situation a large variationin foliar Cd and Zn concentrations was observed, with relative standard deviations in the order of 15%. Foliar concentrations of Cd and Zn in poplars growing on sediment-derived soils increased during the growing season. The accumulation rate was markedly higher on polluted sediment-derived soils than in thereference situation. Poplars grown on polluted sedimentderived soils showed elevated and deviating foliar Cd and Znconcentrations (>7.5 mg Cd kg-1 DW and 320 mg Zn kg-1 DW). A thin unpolluted covering layer did not influence foliarconcentrations. Regardless of site characteristics, poplarage, species or clone, a significant positive relation wasfound between soil and foliar concentration for Zn and to alesser extent for Cd. Bioconcentration factors for Cd and Znwere higher than one in baseline situations, but mostly lowerthan one on polluted sediment-derived soils. Cd:Zn ratio wason the average twice as high as in the soil. Leaf beetlesshowed normal body concentrations for Zn, but higher Cdconcentrations than in reference situations. BCFs were lowerthan one on sediment-derived soils. Foliar results indicateda possible threat in long-term habitat development of poplarplantations. This conclusion was confirmed by the significanthigher Cd concentrations in leaf beetles grown on poplarswith deviant foliar concentrations. However, litterdecomposition rates were generally evaluated as normal.  相似文献   

14.
Research during the last five years has provided evidence that there is a long-term influence of air pollutants on forest ecosystems also in the southern parts of North Europe. High loads of acidity, sulphur and nitrogen affect soil conditions, trees as well as other organisms.In South and West Sweden changes in soil acidity (pH) have been registered during the last 60 years. The changes not only occur in the humus layer, but also in the lower part of the mineral soil. These latter changes cannot be explained without the action of strong acids originating from anthropogenic air pollution.Losses of elements like magnesium, calcium and potassium occur and phosphorus become less available to plants. An increased demand for plant mutrients is a consequence of the increased fall-out of nitrogen compounds. Nutrient imbalances of trees seem to be the result. Increased sensitivity to frost and drought as well as insects and pathogens is expected.The increased soil acidity and the eutrophication of soils caused by the continued input of nitrogen contributes to changes in plant communities.If we assume that there are no changes in deposition, land-use and management of the forests in SW Sweden, the better forest soils (brown forest soils) will have a continued acidification of humus and mineral soil layers resulting in high levels of aluminium and low levels of calcium. This will create a critical situation for roots and mycorrhiza. Soils that are already acid may not become more acidified, but will still be subject to losses of essential elements.Critical deposition levels or loads of acids (hydrogen ions) and nitrogen rendering no further deterioration of soils and leaching have been set to 0.1–0.2 keq·ha-1yr-1 for S Scandinavia (present level 1 keq·ha-1yr-1). For nitrogen the critical load is 10–20 kg N ha-1yr-1 (present range 10–25 kg ha-1yr-1).Contribution from Fourth World Wilderness Congress — Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

15.
Chemical analyses during a decade of bulk precipitation, throughfall, humus water and soil water in forest plots ranging from sand to silt of Pleistocene origin in Flanders (N-Belgium) prove that previous and present weathering is predominantly due to synthesis of HNO3 from soil organic matter. The HNO3 reacts with silicates and possibly PO4(3-) species, releasing Al, Fe, nutrient base cations and H2PO4-, and is transformed into NO3-. In all soils solubilized Al3+ is predominantly associated with NO3- and with some organic bases in the coarse-textured soils with undisturbed or previously plowed spodic B horizon. The amounts of ions leached, especially Al3+ and NO3-, are much higher in the sandy than in the silty soils as a result of a stronger neutralization of acidity in the silty soils. Nutrients, leached from the soil, have to be replenished in some way for a sustained forest growth. N- and S-species must come from the atmosphere. Basic cations and P-species have to be supplied out of the solid phase. The concentrations of NO3- in the soil water show that the liberation of these elements from the solid phase is performed by HNO3. Especially in the coarse-textured soils the need for NO3- is high. Therefore, instead of being a real hazard for the forest ecological system, supplementary addition of HNO3 or NH3 can be beneficial.  相似文献   

16.
A major tool used in the assessment of anthropic atmospheric effects on aquatic and terrestrial ecosystems is biogeochemical nutrient cycling and budgets. However, to be most effective such study should be done in an ecosystem context. Also some assessment of natural variation in factors affecting nutrient cycling must be in place before trends, often subtle and long-term, attributable to man can be statistically quantified. The input and output balance of chemical species in watershed ecosystems is considerably influenced by ecosystem succession. It is hypothesized that during primary ecosystem succession chemical element output is initially relatively high due to rapid acidification and lack of plant uptake. Outputs decline during the period of high ecosystem productivity and biomass accumulation, and they again rise during late successional stages to approximate inputs from precipitation weathering, and aerosol capture. Glacier Bay provides a unique opportunity to quantify many mechanisms responsible for variation in nutrient cycles without the need for site manipulation. This is especially true for quantifying the rate and magnitude of natural acidification in ecosystems. The park has a spectrum of watersheds differing in stage of primary and secondary succession following deglaciation. These sites are not now subjected to or altered by anthropic atmospheric inputs. The objectives of this research were (1) determine the rate of soil chemical change which occurs following deglaciation, (2) relate soil acidification to presence of organic matter, soil NO inf3 sup- , and total N, (3) estimate the downward movement of ionic species within the soil profiles with increasing acidification from advancing plant succession, and (4) determine if such processes and ionic movements might be reflected in watershed stream ionic outputs. We studied five watersheds ranging from 40–350 years since deglaciation. Soil samples were collected and lysimeters installed in seven vegetation successional stages following deglaciation. An anion of ecological importance and a common air contaminant is NO inf3 sup- , and its discharge in streamflow from early successional ecosystems was found to be high. The terrestrial biota in such systems was dominated by Alnus sinuata, a major nitrogen fixer. Stream discharge of NO inf3 sup- suggested that early successional ecosystem N fixation exceeded biotic uptake. This was confirmed by examining NO inf3 sup- in soil extractions and lysimeters. This process was particularly evident beneath >20-year old Alnus (forty years since deglaciation). concurrent with increased NO inf3 sup- concentrations below the rooting zone was increased H+ which increased 100x during 25 years of primary succession. This natural acidification from a mobile NO inf3 sup- ion resulted in an pronounced increase in soil base cation leaching and mobilization of aluminium in the soil profile. The magnitude and short time required for such acidification greatly exceeded anything projected or modeled for systems impacted by anthropic inputs. Stream SO inf4 sup2- concentrations also were high relative to precipitation inputs suggesting mineralization of sulfur within the ecosystem and/or poor soil adsorption of SO inf4 sup2- . This is an important finding in such ecosystems where cation nutrient ion levels are often very low. Should atmospheric inputs of SO inf4 sup2- increase additional loss of cations appears imminent. These data suggest that most early successional ecosystems at Glacier Bay would be sensitive to anthropic inputs of both NO inf3 sup- and SO inf4 sup2- . This is unusual in other ecosystems where many conserve ionic NO inf3 sup- inputs, and older systems have considerable SO inf4 sup2- adsorption capacity. The effect of any increased atmospheric inputs of these ions would be accelerated cation leaching and ecosystem acidification.Contribution from Fourth World Wilderness Congress—Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

17.
Anthropogenic eutrophication of aquatic ecosystems continues to be one of the major environmental issues worldwide and also of Brazil. Over the last five decades, several approaches have been proposed to discern the trophic state and the natural and cultural processes involved in eutrophication, including the multi-parameter Assessment of Estuarine Trophic Status (ASSETS) index model. This study applies ASSETS to four Brazilian lagoons (Mundaú, Manguaba, Guarapina, and Piratininga) and one estuarine delta (Paraíba do Sul River), set along the eastern Brazilian coast. The model combines three indices based on the pressure–state–response (PSR) approach to rank the trophic status and forecast the potential eutrophication of a system, to which a final ASSETS grade is established. The lagoons were classified as being eutrophic and highly susceptible to eutrophication, due primarily to their longer residence times but also their high nutrient input index. ASSETS classified the estuary of the Paraíba do Sul river with a low to moderate trophic state (e.g., largely mesotrophic) and low susceptibility to eutrophication. Its nutrient input index was high, but the natural high dilution and flushing potential driven by river flow mitigated the susceptibility to eutrophication. Eutrophication forecasting provided more favorable trends for the Mundaú and Manguaba lagoons and the Paraíba do Sul estuary, in view of the larger investments in wastewater treatment and remediation plans. The final ASSETS ranking system established the lagoons of Mundaú as “moderate,” Manguaba as “bad,” Guarapina as “poor,” and Piratininga as “bad,” whereas the Paraíba do Sul River Estuary was “good.”  相似文献   

18.
Wastewater discharge from shrimp farming is one of the main causes of eutrophication in mangrove ecosystems. We investigated the phosphorus (P) geochemistry in mangrove soils affected by shrimp farming effluents by carrying out a seasonal study of two mangrove forests (a control site (CS); a site affected by shrimp farm effluents (SF)). We determined the soil pH, redox potential (Eh), total organic carbon (TOC), total phosphorus (TP), and dissolved P. We also carried out sequential extraction of the P-solid phases. In SF, the effluents affected the soil physicochemical conditions, resulting in lower Eh and higher pH, as well as lower TOC and higher TP than in CS. Organic P forms were dominant in both sites and seasons, although to a lesser extent in SF. The lower TOC in SF was related to the increased microbial activity and organic matter decomposition caused by fertilization. The higher amounts of P oxides in SF suggest that the effluents alter the dominance of iron and sulfate reduction in mangrove soils, generating more reactive Fe that is available for bonding to phosphates. Strong TP losses were recorded in both sites during the dry season, in association with increased amounts of exchangeable and dissolved P. The higher bioavailability of P during the dry season may be attributed to increased mineralization of organic matter and dissolution of Ca-P in response to more oxidizing and acidic conditions. The P loss has significant environmental implications regarding eutrophication and marine productivity.  相似文献   

19.
One hundred and two white spruce (Picea glauca (Moench) Voss) stands were studied in the Sub-boreal Spruce zone of British Columbia and were quantitatively classified into seven soil moisture regimes (moderately dry, slightly dry, fresh, moist, very moist, wet, and very wet) according to actual/potential evapotranspiration ratio, depth to gleyed layer or prominent mottling, and depth to groundwater table. The delineated soil moisture regimes demonstrated strong relationships with the composition of understory vegetation and white spruce foliar nutrients and site index. These relationships implied that the three differentiating characteristics used in the classification provided a good estimation of growing-season soil water supply. In addition to soil moisture regimes, three soil aeration regimes (adequate, restricted, and deficient) were delineated according to presence or absence of gleyed horizons and groundwater table, slope gradient, and soil texture. These soil aeration regimes helped in explaining the variation in white spruce site index, especially on water-surplus sites. Thus, an integrated classification of soil moisture-aeration regimes was proposed to explain the effect of soil moisture and aeration on white spruce productivity.The results of this study gave further evidence that soil moisture and aeration regimes, differentiated on the basis of climatic data and soil morphological properties, are useful measures of soil moisture and aeration conditions in sub-boreal forest soils.  相似文献   

20.
Air pollution affects forest health through atmospheric deposition of acidic and nitrogen compounds and elevated levels of tropospheric ozone (O3). In 1985, a monitoring network was established across Europe and various research efforts have since been undertaken to define critical values. We measured atmospheric deposition of acidity and nitrogen as well as ambient levels of O3 on 12, 13, and 14 plots, respectively, in the framework of the Swiss Long-Term Forest Ecosystem Research (LWF) in the period from 1995 to 2002. We estimated the critical loads of acidity and of nitrogen, using the steady state mass balance approach, and calculated the critical O3 levels using the AOT40 approach. The deposition of acidity exceeded the critical loads on 2 plots and almost reached them on 4 plots. The median of the measured molar ratio of base nutrient cations to total dissolved aluminium (Bc/Al) in the soil solution was higher than the critical value of 1 for all depths, and also at the plots with an exceedance of the critical load of acidity. For nitrogen, critical loads were exceeded on 8 plots and deposition likely represents a long-term ecological risk on 3 to 10 plots. For O3, exceedance of critical levels was recorded on 12 plots, and led to the development of typical O3-induced visible injury on trees and shrubs, but not for all plots due to (1) the site specific composition of O3 sensitive and tolerant plant species, and (2) the influence of microclimatic site conditions on the stomatal behaviour, i.e., O3 uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号