首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Metal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremula × tremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mg kg−1), chromium (80 mg kg−1), copper (180 mg kg−1), nickel (81 mg kg−1), vanadium (240 mg kg−1) and zinc (520 mg kg−1). Of the ten trace elements analyzed, only Cd and Zn accumulated in the leaves with maximal foliar concentrations of 35 and 2400 mg kg−1 (dry weight), respectively. There was a strong correlation between Cd and Zn concentrations and bioaccumulation factors (concentration in plant/soil) in the leaves, branches and roots, suggesting similar transport mechanisms for these two metals. The levels of MT2b correlated with Cd and Zn concentrations in the leaves, demonstrating that increased MT2b expression is one of the responses of hybrid aspen to chronic metal exposure.  相似文献   

2.
The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg−1 and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg−1 Cr and 1000 mg kg−1 Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.  相似文献   

3.
The pot-culture experiment and field studies were conducted to screen out and identify cadmium (Cd) excluders from 40 Chinese cabbage genotypes for food safety. The results of the pot-culture experiment indicated that the shoot Cd concentrations under three treatments (1.0, 2.5 and 5.0 mg Cd kg−1 Soil) varied significantly (p < 0.05), with average values of 0.70, 3.07 and 5.83 mg kg−1, respectively. The Cd concentrations in 12 cabbage genotypes were lower than 0.50 mg kg−1. The enrichment factors (EFs) and translocation factors (TFs) in 8 cabbage genotypes were lower than 1.0. The field studies further identified Lvxing 70 as a Cd-excluder genotype (CEG), which is suitable to be planted in low Cd-contaminated soils (Cd concentration should be lower than 1.25 mg kg−1) for food safety.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg−1) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg−1) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg−1), Cu (60.0 to 120.1 mg kg−1) and Ni (31.7 to 83.0 mg kg−1) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg−1). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.  相似文献   

5.
Pociecha M  Lestan D 《Chemosphere》2012,86(8):843-846
Soil washing with EDTA is known to be an effective means of removing toxic metals from contaminated soil. A practical way of recycling of used soil washing solution remains, however, an unsolved technical problem. We demonstrate here, in a laboratory scale experiment, the feasibility of using acid precipitation to recover up to 50% of EDTA from used soil washing solution obtained after extraction of Pb (5330 mg kg−1), Zn (3400 mg kg−1), Cd (35 mg kg−1) and As (279 mg kg−1) contaminated soil. Up to 100% of EDTA residual in the washing solution and 100%, 97%, 98% and 100% of initial Pb, Zn, Cd and As concentration in the solution, respectively, were removed in an electrolytic cell using a graphite anode. We employed the recovered EDTA and treated washing solution to prepare recycled soil washing solution with the same potential for extracting toxic metals from soil as the original. The efficiency of soil washing depends on the EDTA concentration. Using twice recycled 30 mmol EDTA kg−1 soil, we removed 44%, 20%, 53% and 61% of Pb, Zn, Cd and As, respectively, from contaminated soil.  相似文献   

6.
The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg−1; dry weight) in Gironde oysters, we compared long-term (∼1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ∼0.3 mg kg−1; Cd: ∼0.8 mg kg−1) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg−1; Ag: from 6.7 to 0.43 mg kg−1) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg−1, dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg−1, dw after 1993. Based on the Cd/Ag ratio (Cd/Ag ∼ 2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials.  相似文献   

7.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

8.
A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg−1. A biomass production of 1 and 5 t dm ha−1 yr−1 yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.  相似文献   

9.
Anjum R  Grohmann E  Malik A 《Chemosphere》2011,84(1):175-181
A total of 35 bacteria from contaminated soil (cultivated fields) near pesticide industry from Chinhat, Lucknow, (India) were isolated and tested for their tolerance/resistance to pesticides, heavy metals and antibiotics. Bacterial isolates were identified by 16S rDNA sequencing. Gas Chromatography analysis of the soil samples revealed the presence of lindane at a concentration of 547 ng g−1 and α-endosulfan and β-endosulfan of 422 ng g−1 and 421 ng g−1 respectively. Atomic Absorption Spectrophotometry analysis of the test sample was done and Cr, Zn, Ni, Fe, Cu and Cd were detected at concentrations of 36.2, 42.5, 43.2, 241, 13.3 and 11.20 mg kg−1 respectively. Minimum inhibitory concentrations of all the isolates were determined for pesticides and heavy metals. All the multi-resistant/tolerant bacterial isolates were also tested for the presence of incompatibility (Inc) group IncP, IncN, IncW, IncQ plasmids and for rolling circle plasmids of the pMV158-family by PCR. Total community DNA was extracted from pesticide contaminated soil. PCR amplification of the bacterial isolates and soil DNA revealed the presence of IncP-specific sequences (trfA2 and oriT) which was confirmed by dot blot hybridization with RP4-derived DIG-labelled probes. Plasmids belonging to IncN, IncW and IncQ group were neither detected in the bacterial isolates nor in total soil DNA. The presence of conjugative or mobilizable IncP plasmids in the isolates indicate that these bacteria have gene transfer capacity with implications for dissemination of heavy metal and antibiotic resistance genes. We propose that IncP plasmids are mainly responsible for the spread of multi-resistant bacteria in the contaminated soils.  相似文献   

10.
Fresh and pasteurized milk samples from Kampala markets were analyzed for organochlorine pesticides using a gas chromatograph equipped with an electron capture detector. Five organochlorine pesticides, namely; aldrin, dieldrin, endosulfan, lindane, DDT and its metabolites were detected in the milk samples and confirmed with a gas chromatograph equipped with a mass spectrometer [GC-MS]. The mean values are expressed in mg kg−1 milk fat (mf) basis. The mean concentration in the fresh milk (= 54) were: 0.026 ± 0.003 mg kg−1 mf; 0.002 ± 0.0003 mg kg−1, below the detection limit; 0.007 ± 0.003 mg kg−1, 0.009 ± 0.002 mg kg−1 milk fat for lindane, endosulfan dieldrin and aldrin, respectively. The mean concentrations of p,p′-DDE; p,p′-DDT and o,p′-DDT were 0.009 ± 0.002 mg kg−1; 0.033 ± 0.007 mg kg−1 and 0.008 ± 0.001 mg kg−1 mf, respectively in the fresh milk samples.In the pasteurized milk samples (= 47), the mean concentrations recorded were: 0.008 ± 0.003 mg kg−1, 0.025 ± 0.004 mg kg−1, and 0.007 ± 0.001 mg kg−1, respectively for p,p′-DDE; p,p′-DDT and o,p′-DDT.Alpha and beta-endosulfan recorded the concentration below the detection limit and the mean of 0.022 ± 0.001 mg kg−1 mf, 0.005 ± 0.002 mg kg−1 mf, and 0.006 ± 0.0002 mg kg−1 mf, respectively for lindane, dieldrin and aldrin. Although, most of the residues detected were above the residue limits set by the FAO/WHO (2008), bioaccumulation of these residues is likely to pose health risks to the consumers of milk in Uganda.  相似文献   

11.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   

12.
Commercially important fresh (581) and frozen (292) marine fish samples of 10 species were collected from seafood factories and evaluated using AAS and ICP-OES. Metal levels significantly (p < 0.05) varied within and between species. However, there were no significant correlations among metals. There were significant interspecific differences for all metals, and yellowfin tuna had the highest level of cadmium and mercury however, red seabream had maximum numbers above the standards. The metal accumulation significantly varied between bottom feeders of intermediately size locally caught fish. The mean cadmium level ranged from 0.0049 to 0.036 mg kg−1 and 1.37% of the total samples exceeded the EU and FAO standards. Mean lead content varied between 0.029 and 0.196 mg kg−1, few samples crossed the EU (2.63%) and FAO (1.6%) limits. Mean mercury level ranged from 0.015 to 0.101 mg kg−1 and none of the samples exceeded the EU limit. Of the total samples analyzed red seabream (2.06%), yellowfin tuna (1.14%), emperor (0.34%), santer bream (0.22%), king fish (0.11%) and skipjack tuna (0.11%) samples crossed the EU limits. In general, fish from these regions are within the safety levels recommended by various organizations and do not pose a health risk in terms of human diet.  相似文献   

13.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

14.
Usman AR  Lee SS  Awad YM  Lim KJ  Yang JE  Ok YS 《Chemosphere》2012,87(8):872-878
In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAFshoots and BAFroots) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg−1, 27.78-120.83 mg kg−1, and 0.13-9.43 mg kg−1, respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg−1) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAFshoot (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAFroot values > 1 and TF values < 1 were suitable; however, Typha orientalis was the best for Cr.  相似文献   

15.
Guan TX  He HB  Zhang XD  Bai Z 《Chemosphere》2011,82(2):215-222
Fertilization of crops with livestock manure (LM) is a common waste disposal option, but repeated application of LM containing high concentrations of heavy metals such as Cu could lead to crop toxicity and environmental risk. To examine the Cu availability and uptake by wheat in a Mollisol affected by Cu-enriched LM, pot experiments were conducted. LM (376 mg kg−1 Cu originally) was spiked with different concentrations of Cu (0, 100, 200, 400, 600 and 800 mg kg−1 soil, added as CuSO4) to simulate soil Cu contamination by LM application. The results indicated that Cu was predominately distributed in organic bound fraction, while the most drastic increase was found in reducible fraction. Acid-extractable fraction played a more important role than other fractions in controlling the mobility and bioavailability of Cu. DTPA-extractable Cu may overestimate the Cu bioavailability since DTPA solution could extract soluble and part of stable forms. The application of LM at 1% level significantly decline the Cu mobility, but that at 3% level exhibited the opposite effect.Although the quantities of Cu in wheat was very low compared with the accumulation in soil, Cu concentrations in roots increased evidently from 12 to 533 mg kg−1 and that in aerial parts were in a narrow range from 12.1 to 32.7 mg kg−1, indicating the more sensitivity of roots to the Cu toxicity. The Cu concentrations in grains after 3% manure application did not approach the threshold for Cu toxicity (<20 mg kg−1) even at higher Cu addition rates.  相似文献   

16.
Bi R  Schlaak M  Siefert E  Lord R  Connolly H 《Chemosphere》2011,83(3):318-326
The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15 mg kg−1 Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1 V cm−1) and direct current electrical field (DC, 1 V cm−1) with switching polarity every 3 h. The electrical fields were applied for 30 d for rapeseed and 90 d for tobacco, each experiment had three replicates. After a total of 90 d growth for rapeseed and of 180 d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils.  相似文献   

17.
Food utilization and growth of the 5th and 6th instar Spodoptera litura Fabricius larvae, and its effect on reproduction potential was evaluated by feeding larvae diets with different doses of Ni for 3 generations. Dose-dependent relationships between Ni levels and food consumption and growth were variable with different larval developmental period and Ni exposure duration. RCR, AD and RGR of the 6th instar larvae were much more affected by Ni exposure than those of 5th instar larvae, and the effects were strongest in the 3rd generation. It was found that RCR was significantly stimulated after 1 and 20 mg kg−1 Ni exposure, while AD was significantly inhibited after 1, 5, 10 and 40 mg kg−1 Ni exposure. However, lower levels of Ni (?5 mg kg−1) significantly increased and higher levels of Ni (?10 mg kg−1) significantly decreased RGR. In 3 successive generations, 10 mg kg−1 Ni significantly increased the ECI and ECD of the 5th instar larvae, and 5 mg kg−1 Ni significantly increased the ECD of the 6th instar larvae. However, ECD were all significantly inhibited with 20 mg kg−1 Ni exposure. Results also revealed that durations of larvae were shortened at low levels of Ni, but extended at high levels of Ni. Fecundity was inhibited by the highest Ni doses in each generation, while improved by low Ni doses in the 3rd generation. Hatching rates in all treatments were significantly decreased in a Ni dose-dependent manner. Study indicated that effects of Ni on these parameters were predominant with the increasing Ni exposure period.  相似文献   

18.
Residues and dynamics of pymetrozine in rice field ecosystem   总被引:1,自引:0,他引:1  
Li C  Yang T  Huangfu W  Wu Y 《Chemosphere》2011,82(6):901-904
The fate of pymetrozine was studied in rice field ecosystem, and a simple and reliable analytical method for determination of pymetrozine in soil, rice straw, paddy water and brown rice was developed. Pymetrozine residues were extracted from samples, cleaned up by solid phase extraction (SPE) and then determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). The average recovery was 81.2-88.1% from soil, 83.4-88.6% from rice straw, 87.3-94.1% from paddy water and 82.9-85.3% from brown rice. The relative standard deviation (RSD) was less than 15%. The limits of detection (LODs) of pymetrozine calculated as a sample concentration were 0.0003 mg kg−1 (mg L−1) for soil and paddy water, 0.001 mg kg−1 for brown rice and rice straw. The results of kinetics study of pymetrozine residue showed that pymetrozine degradation in water, soil, and rice straw coincided with C = 0.194e−0.986t, C = 0.044e−0.099t, and C = 0.988e−0.780t, respectively; the half-lives were about 0.70 d, 7.0 d and 0.89 d, respectively. The degradation rate of pymetrozine in water was the fastest, followed by rice straw. The highest final pymetrozine residues in brown rice were 0.01 mg kg−1, which was lower than the EU’s upper limit of 0.02 mg kg−1 in rice. Therefore, a dosage of 300-600 g a.i.hm−2 was recommended, which could be considered as safe to human beings and animals.  相似文献   

19.
20.
A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000 mg kg−1 in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235-10,980 mg kg−1) and accumulated biomass (with a mean dry weight of 25.7 g plant−1) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5 nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号