首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Wang C  Zhang S  Wang P  Hou J  Qian J  Ao Y  Lu J  Li L 《Chemosphere》2011,84(1):136-142
In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4 d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a + b) and increased malondialdehyde and O2− and H2O2 content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA + 50 μM Pb or 100 μM SA + 50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O2− and H2O2 content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.  相似文献   

2.
Bisphenol A (BPA) is a well-known environmental toxic substance, which exerts unfavorable effects through endocrine disruptor (ER)-dependent and ER-independent mechanisms to threaten ecological systems seriously. BPA may also interact with other environmental factors, such as light and heavy metals, to have a synergetic effect in plants. However, there is little data concerning the toxic effect of BPA on the primary producers-plants and its possible interaction with light-dependent response. Here, the effects of BPA on germination, fresh weight, tap root length, and leaf differentiation were studied in Arabidopsis thaliana under different parts of light spectrum (dark, red, yellow, green, blue, and white light). Our results showed that low-dose BPA (1.0, 5.0 μM) caused an increase in the fresh weight, the tap root length and the lateral root formation of A. thaliana seedlings, while high-dose BPA (10.0, 25.0 μM) show an inhibition effect in a dose-dependent manner. Unlike karrikins, the effects of BPA on germination fresh weight and tap roots length under various light conditions are similar, which imply that BPA has no notable role in priming light response in germination and early seedling growth in A. thaliana. Meanwhile, BPA exposure influences the differentiation of A. thaliana leaf blade significantly in a light-dependent manner with little to no effect in dark and clear effect under red illumination.  相似文献   

3.
Oil sands mining in the Athabasca region of northern Alberta results in the production of large volumes of oil sands process-affected water (OSPW). We have evaluated the effects of OSPW, the acid extractable organic (AEO) fraction of OSPW, and individual naphthenic acids (NAs) on the germination and development of the model plant, Arabidopsis thaliana (Arabidopsis). The surrogate NAs that were selected for this study were petroleum NAs that have been used in previous toxicology studies and may not represent OSPW NAs. A tricyclic diamondoid NA that was recently identified as a component of OSPW served as a model NA in this study. Germination of Arabidopsis seeds was not inhibited when grown on medium containing up to 75% OSPW or by 50 mg L−1 AEO. However, simultaneous exposure to three simple, single-ringed surrogate NAs or a double-ringed surrogate NA had an inhibitory effect on germination at a concentration of 10 mg L−1, whereas inhibition of germination by the diamondoid model NA was observed only at 50 mg L−1. Seedling root growth was impaired by treatment with low concentrations of OSPW, and exposure to higher concentrations of OSPW resulted in increased growth inhibition of roots and primary leaves, and caused bleaching of cotyledons. Treatment with single- or double-ringed surrogate NAs at 10 mg L−1 severely impaired seedling growth. AEO or diamondoid NA treatment was less toxic, but resulted in severely impaired growth at 50 mg L−1. At low NA concentrations there was occasionally a stimulatory effect on root and shoot growth, possibly owing to the broad structural similarity of some NAs to known plant growth regulators such as auxins. This report provides a foundation for future studies aimed at using Arabidopsis as a biosensor for toxicity and to identify genes with possible roles in NA phytoremediation.  相似文献   

4.
Jeong S  Moon HS  Nam K  Kim JY  Kim TS 《Chemosphere》2012,88(2):204-210
In this study, phosphate-solubilizing bacteria (PSB), Bacillus megaterium, were used to enhance Cd bioavailability and phytoextractability of Cd from contaminated soils. This strain showed a potential for directly solubilizing phosphorous from soils more than 10 folds greater than the control without inoculation. The results of pot experiments revealed that inoculation with B. megaterium significantly increased the extent of Cd accumulation in Brassica juncea and Abutilon theophrasti by two folds relative to the uninoculated control. The maximum Cd concentrations due to inoculation were 1.6 and 1.8 mg Cd g−1 plant for B. juncea and A. theophrasti after 10 wk, respectively. The total biomass of A. theophrasti was not significantly promoted by the inoculation treatment, yet the total biomass of B. juncea increased from 0.087 to 0.448 g. It is also worth to mention that B. juncea predominantly accumulates Cd in its stems (39%) whereas A. theophrasti accumulates it in its leaves (68%) after 10 wk. The change of the Cd speciation indicated that inoculation of B. megaterium as PSB increased the bioavailabilty of Cd and consequently enhanced its uptake by plants. The present study may provide a new insight for improving phytoremediation using PSB in the Cd-contaminated soils.  相似文献   

5.
Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils   总被引:1,自引:0,他引:1  
Lin W  Xiao T  Wu Y  Ao Z  Ning Z 《Chemosphere》2012,86(8):837-842
A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest China’s Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g1, respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g−1, respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g−1 that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf > stem > root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg−1yr−1 by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively.  相似文献   

6.
The impairment of root growth and photosynthetical functioning are the main impacts of trace elements on woody plant seedlings. In this work, we assessed the response of Holm oak (Quercusilex subsp. ballota) and mastic shrub (Pistacia lentiscus) seedlings to high concentrations of Cd and Tl in the rhizosphere. These are non-essential trace elements, with a potential high mobility in the soil-plant system. Seedlings of these species are frequently used in the afforestation of degraded soils in mining areas. Plants were exposed to different levels of Cd (20, 80 and 200 mg L−1) and Tl (2, 10 and 20 mg L−1) in a sand culture. Biomass allocation, growth rates, chlorophyll fluorescence and gas exchange were studied. Both metals affected root biomass. Cadmium produced an increase in the root mass ratio and a decrease in the specific leaf area of the plants in oak seedlings, while Tl did not provoke such response. Mastic plants were more sensitive to Tl and Cd than oak plants. Between elements, Tl provoked more severe toxic effects in the plants, affecting the antennae complexes and reaction centers of the photosystem II. Both elements decreased net assimilation rates (down to a 20% of the control plants) and stomatal conductance (5-10% of the values for the control plants). Cadmium was highly retained in the roots of both species, while Tl was highly translocated into the leaves. In general, Holm oak showed a higher tolerance for Cd than for Tl, and a higher resistance to both metals than mastic shrub, due to a high capacity for Cd retention at the root level. However, such accumulation in roots may induce water stress in the seedling exposed to Cd.  相似文献   

7.
Yan XL  Lin LY  Liao XY  Zhang WB 《Chemosphere》2012,87(1):31-36
Panax notoginseng, a traditional rare Chinese medicinal herb, was recently found to bring health risk to consumers, mainly because soil in its major plantation area was contaminated by arsenic (As). We investigated the effect of soil As pollution on the growth and As uptake of pot-cultured P. notoginseng, and the associated mechanisms of As stressed response. Results showed that, comparing with P. notoginseng growing in a low-As soil, the root, stem, and leaf biomasses of those growing in a high-As soil significantly reduced by 0.75, 0.09 and 0.21 g seedling−1, respectively. Arsenic concentrations in roots, stems and leaves of the seedlings growing in high-As soil were 22, 15 and 3 times higher than those growing in low-As soil, respectively. Regardless of the soil As concentration, As existed in plants mainly as As(III), suggesting that the reduction of As(V) is a key step in As metabolism. Arsenic was distributed primarily in cell walls (51.7% for plants growing in the low-As soil, and 51.5% in the high-As soil), followed by cytoplasm supernatant, with cell organelles containing the least As. Compared with plants growing in the low-As soil, those in the high-As soil had increased superoxide dismutase and peroxidase activities in their roots, stems, and leaves, which would be associate with improving the resistance of P. notoginseng to As stress. The results suggest that there exists some special mechanisms of As-tolerance in P. notoginseng and the study is of significance in developing measures to reduce As in the herb.  相似文献   

8.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

9.
The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mobilizing high concentrations of Cd, Zn and Pb in soils. P. myrsinacearum RC6b exhibited a high degree of resistance to Cd (350 mg L−1), Zn (1000 mg L−1) and Pb (1200 mg L−1). Furthermore, P. myrsinacearum RC6b showed multiple plant growth beneficial features including the production of 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophore and solubilization of insoluble phosphate. Inoculation of P. myrsinacearum RC6b significantly increased S. plumbizincicola growth and organ metal concentrations except Pb, which concentration was lower in root and stem of inoculated plants. The results suggest that the metal mobilizing P. myrsinacearum RC6b could be used as an effective inoculant for the improvement of phytoremediation in multi-metal polluted soils.  相似文献   

10.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   

11.
Zhou Q  Diao C  Sun Y  Zhou J 《Chemosphere》2012,86(10):994-1000
The growth, photosynthesis rate, and ultrastructure of Mirabilis jalapa L. as a newly-found remediation species under stress of nitrobenzene (NB) and its uptake and removal of NB by the plants were investigated. The results showed that M. jalapa plants could endure contaminated soils by lower than 10.0 mg NB kg−1 because there was no decrease in the total length of the plant roots, the maximum length of the hypocotyle, the length of the first seminal root, the height of the shoots and the dry biomass of the seedlings as well as the photosynthesis rate of the plants compared with those in the control. In particular, the growth of the plants could be significantly (< 0.01) enhanced by 0.1 mg NB kg−1 under unautoclaved and autoclaved soils. Ultrastructural observations on leaf cells of the plants found that these cells had smooth, clean and continuous cell membranes and cell walls, indicating that there was no obvious damage by NB in comparison with those in the control. Although the absorption of NB in shoots and roots of M. jalapa was weak, plant-promoted biodegradation of NB was considerable and the dominant contribution in the removal of NB from contaminated soils, suggesting the feasibility of M. jalapa applied to phytoremediation of NB contaminated soils.  相似文献   

12.
We are fertilizing a thicket with 0, 10, 20 and 50 kg nitrogen (N) ha−1 yr−1 in central Spain. Here we report changes in cover, pigments, pigment ratios and FvFm of the N-tolerant, terricolous, lichen Cladonia foliacea after 1-2 y adding N in order to study its potential as biomarker of atmospheric pollution. Cover tended to increase. Pigments increased with fertilization independently of the dose supplied but only significantly with soil nitrate as covariate. β-carotene/chlorophylls increased with 20-50 kg N ha−1 yr−1 (over the background) and neoxanthin/chlorophylls also increased with N. (Neoxanthin+lutein)/carotene decreased with N when nitrate and pH seasonalities were used as covariates. FvFm showed a critical load above 40 kg N ha−1 yr−1. Water-stress, iron and copper also explained variables of lichen physiology. We conclude that this tolerant lichen could be used as biomarker and that responses to N are complex in heterogeneous Mediterranean-type landscapes.  相似文献   

13.
14.
Extensive use of pharmaceuticals in human and veterinary medicine and aquaculture practices pose a serious threat to aquatic organisms. In the present investigation, Cirrhinus mrigala an Indian major carp was exposed to different concentrations of clofibric acid (CA) and diclofenac (DCF) and certain biochemical and ionoregulatory responses were assessed under short and long term exposures. During short-term (96 h) exposure period, plasma glucose and sodium (Na+) levels were increased at all concentrations (1, 10 and 100 μg L−1) of CA and DCF treated fish. Plasma protein and chloride (Cl) levels were found to be decreased at all concentrations of CA and DCF exposed fish comparatively to control groups. Meanwhile an increase in plasma potassium (K+) level was noted in fish exposed to CA treatments alone and in DCF treatments it was decreased. In long-term exposure (35 d), plasma Na+ and Cl levels were found to be significantly increased at all concentration of CA and DCF. However, a biphasic trend was observed in plasma glucose, protein and K+ levels. In both the treatments, a significant (P < 0.01 and P < 0.05) changes were observed in all parameters measured in fish exposed to different concentrations of CA and DCF. The results of the present investigation indicate that both the drugs caused significant changes in biochemical and ionoregulatory responses of fish at all concentrations. The alterations of these parameters can be useful in monitoring of pharmaceutical residues present in aquatic environment.  相似文献   

15.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   

16.
17.
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg−1) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot−1) was 4.3 times higher than that by ryegrass (1.5 μg pot−1). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21–38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.  相似文献   

18.
A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000 mg kg−1 in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235-10,980 mg kg−1) and accumulated biomass (with a mean dry weight of 25.7 g plant−1) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5 nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources.  相似文献   

19.
Glyphosate use has increased over the last decades for the control of invasive plant species in wetland ecosystems. Although glyphosate has been considered ‘environmentally’ safe, its repeated use could increase the toxicological risk derived from diffuse pollution of surface and groundwater on non-target vegetation. A glasshouse study was designed to determine the effect produced by the addition of different sub-lethal doses of glyphosate herbicides (5–30 mg L−1) to the nutrient solution on the growth and photosynthetic apparatus of Bolboschoenus maritimus. Although B. maritimus plants were able to grow and survive after 20 d of exposure to glyphosate, the presence of this herbicide affected their growth, through a direct interaction with the root system. Particularly, at 30 mg L−1 glyphosate, B. maritimus showed ca. 30% of biomass decrease. The reduction in B. maritimus growth was due to a decrease in net photosynthetic rate (A), which ranged between values ca. 11.5 and 5.5 μmol m−2 s−1 CO2 for the control and the highest glyphosate treatment, respectively. The response of A to glyphosate could be largely accounted for by non-stomatal limitations, since stomatal conductance was similar in all glyphosate treatments. Thus, A decrease was prompted by the negative impact of herbicide on photochemical (PSII) apparatus, the reduction in the absorption of essential nutrients, the reduction of photosynthetic pigments and possibly the reduction in Rubisco carboxilation capacity. Moreover, glyphosate excess caused photoinhibitory damage. In conclusion, in this study we have shown that herbicide water pollution could be a source of indirect phytotoxicity for B. maritimus.  相似文献   

20.
As a silicon hyperaccumulator, lowland rice takes up higher levels of As than many other plants due to silicic acid and arsenite sharing the same transporters (Lsi1 and Lsi2). Glomus intraradices (AH01) was inoculated to rice under different arsenite concentrations (0, 2 and 8 μM) in order to investigate the interactions between arbuscular mycorrhizal fungus and rice on the accumulation of arsenite. The relative mRNA expressions of Lsi1 and Lsi2 resulted in a down-regulating trend in mycorrhizal plants. Under 2 μM arsenite treatments, Lsi1 and Lsi2 were significantly decreased, by 0.7-fold (P < 0.05) and 0.5-fold (P < 0.01), respectively, in mycorrhizal plants when compared with non-mycorrhizal plants. This led to the decrease of arsenite uptake per unit of root dry mass. No organic As species were detected in both roots and shoots. The As(III)/As(V) ratios indicated that mycorrhizal plants immobilized most of the arsenite proportion in the roots and prevented its translocation from the roots to the shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号