首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Acanthochromis Gill is a monotypic genus within the damselfish family Pomacentridae, erected for an unusual species [A. polyacanthus (Bleeker)] that uniquely lacks larval dispersal. Instead, offspring are reared in the parental territory, in the manner of cichlids, and fledged into the surrounding habitat. Phenotypic and genotypic variation was surveyed on the basis of body colouration and 7 polymorphic loci in 19 populations from 5 regions of the central and southern Great Barrier Reef (GBR). Variation in both characters was found at regional and local scales. Two colour morphs were recognised: a bicoloured morph from the three northern regions and a uniform dark morph from the two southern regions. Isozyme analysis showed a similar pattern with greatest variation between the different morphs, but also with significant variation at both regional and local scales within morphotypes. Heterozygosity was maximal in the central populations, which, together with other measures of variability, suggests a mixing of separate gene pools in this region and denies species status to the two morphotypes despite numerous fixed differences in allele frequencies between the most distant populations. The presence of fixed differences in multiple alleles between populations separated by 1000 km indicates negligible gene flow over such distances and long isolation of these gene pools. These patterns may reflect recolonisation of the GBR after the last sea-level rise by fish from two stocks. Founder effects and random drift in small populations after colonisation are probably the major sources of the local and regional variations observed at smaller spatial scales. This diversity has been maintained among populations at all scales by the very low levels of gene flow possible without an effective strategy for larval dispersal between coral reefs.  相似文献   

2.
Jones J  Doran PJ  Holmes RT 《Ecology》2007,88(10):2505-2515
Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.  相似文献   

3.
Spatial synchrony, defined as the correlated fluctuations in abundance of spatially separated populations, can be caused by regional fluctuations in natural and anthropogenic environmental population drivers. Investigations into the geography of synchrony can provide useful insight to inform conservation planning efforts by revealing regions of common population drivers and metapopulation extinction vulnerability. We examined the geography of spatial synchrony and decadal changes in these patterns for grassland birds in the United States and Canada, which are experiencing widespread and persistent population declines. We used Bayesian hierarchical models and over 50 years of abundance data from the North American Breeding Bird Survey to generate population indices within a 2° latitude by 2° longitude grid. We computed and mapped mean local spatial synchrony for each cell (mean detrended correlation of the index among neighboring cells), along with associated uncertainty, for 19 species in 2, 26-year periods, 1968–1993 and 1994–2019. Grassland birds were predicted to increase in spatial synchrony where agricultural intensification, climate change, or interactions between the 2 increased. We found no evidence of an overall increase in synchrony among grassland bird species. However, based on the geography of these changes, there was considerable spatial heterogeneity within species. Averaging across species, we identified clusters of increasing spatial synchrony in the Prairie Pothole and Shortgrass Prairie regions and a region of decreasing spatial synchrony in the eastern United States. Our approach has the potential to inform continental-scale conservation planning by adding an additional layer of relevant information to species status assessments and spatial prioritization of policy and management actions. Our work adds to a growing literature suggesting that global change may result in shifting patterns of spatial synchrony in population dynamics across taxa with broad implications for biodiversity conservation.  相似文献   

4.
Ocean acidification is one of the key threats facing coral reef ecosystems, but there are few estimates of spatial and temporal variability in pH among reef habitats. The present study documents levels of spatial variability in pH among coral reef habitats (9 to 10), among locations separated by 100’s km of latitude and between east (Great Barrier Reef, GBR) and west (Ningaloo Reef) coasts of Australia. Differences were found in pH between inshore and offshore waters along Ningaloo Reef (means 8.45, 8.53, respectively). Replicate assessments here ranged from 8.22 to 8.64. On the GBR, the range of values over all habitats and replicates was 0.39 pH units (7.98 to 8.37). There were minor but significant differences of 0.05 pH units between 5 consecutive days for habitats on average. Highest pH was recorded in filamentous algal beds maintained by the damselfish Dischistodus perspicillatus. Lowest pH was found in water extracted from sand-dwelling goby holes. While there were marked changes in pH over a 48-h sampling period among 4 habitats at Lizard Island (GBR), there was little evidence of a diel trend. Understanding how pH varies at scales that are relevant to organisms that live on shallow coral reefs is crucial for the design and interpretation of experiments that test the effects on organisms of the changes in water chemistry predicted to affect oceans in the future.  相似文献   

5.
Light traps were used to capture larval fishes, immediately before settlement, at two localities 500 km apart on the Great Barrier Reef (GBR) in December, 1987. Samples from Lizard Island, in the northern GBR, and Davies Reef, in the central GBR, were dominated by two species of damselfish:Chromis atripectralis andPomacentrus coelestis. Analysis of otoliths revealed significant differences in both size and age at settlement between the two localities forP. coelestis, but not forC. atripectoralis. Growth rates determined for pre- and post-settlementP. coelestis suggested a sigmoidal growth trajectory through the larval life, with growth slowing as fishes approached the time of settlement. Post-settlement growth rates were faster than growth prior to settlement in both species. Growth in both species was, however, similar between localities. The relationship between fish size and otolith size was complex, varying both between pre- and post-settlement fishes, and among localities. This emphasizes the need to validate the relationship between fish size and otolith size before otoliths may be used to back-calculate individual growth trajectories.Contribution No. 500 from the Australian Institute of Marine Science  相似文献   

6.
Reproductive patterns of the endemic Hawaiian damselfish Dascyllus albisella were examined around the island of Oahu for 5 m in 1992. Daily variation in spawning was studied at four spatial scales: individual territories; reef transects; whole patch reefs; and locations separated by>20 km. A 6 d, non-lunar nesting cycle was found for individual males, and a synchronized, 6 d, nonhinar spawning cycle was found within reef transects, whole patch reefs, and locations. Spawning synchronicity was maintained among reefs within a location. However, spawning among locations was found to be asynchronous, limiting the spatial scale of reproductive synchrony to>1 km but<20 km. Inherent benefits of synchronous reproduction are discussed for D. albisella, but only the localized swamping of planktonic predators may be an inherent benefit of synchronous spawning for this species. Alternatively, synchronous spawning among populations may exist from adults tracking local, favorable environmental conditions rather than having evolved towards an inherent benefit of synchronization.  相似文献   

7.
Species of the reef goby genus Gnatholepis exhibit enormous geographic ranges with little evidence of population segregation detectable based on mitochondrial DNA. To determine if genetic differentiation is evident with more rapidly evolving markers, seven microsatellite loci were screened from the species Gnatholepis anjerensis and G. scapulostigma and population segregation was tested among fish from across the South Pacific. Both AMOVA and pairwise F ST analyses showed that, in concordance with previous mitochondrial results, most genetic variance occurs within individual populations, as population differentiation is evident only over the largest distances (>3,700 km). This result is contrasted with previous studies demonstrating that despite their relatively long larval periods, some gobiid fishes exhibit population differentiation on small (<100 km) geographic scales. Coalescence analysis showed that current Pacific populations of these species originated in the Pleistocene, presumably related to sea level fluctuations associated with episodes of glaciation. However, rate analysis based on a phylogeny of Gnatholepis species indicates that the species themselves are much older, consistent with a complex history of rapid, short-term population contractions and expansions, with corresponding rapid dispersal.  相似文献   

8.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

9.
The objective of the present study was to investigate the population genetic structure of the commercially important camouflage grouper, Epinephelus polyphekadion (Bleeker, 1849), in the western and central Pacific Ocean to improve existing management. Camouflage grouper are widely distributed in the Indo-Pacific and form brief, seasonal, spawning aggregations that are often heavily fished. The present study examined populations sampled in 1997-1998 at five sites in the western central Pacific spanning a geographic distance of ~5,000 km: New Caledonia, Great Barrier Reef, Palau, Marshall Islands, and Pohnpei (Micronesia). Primer pairs were developed to examine genetic variation at three polymorphic microsatellite loci. Cluster analysis, using genetic distance, revealed three regional groupings: (1) Palau, (2) Pohnpei and the Marshall Islands, and (3) the Great Barrier Reef and New Caledonia. Highly significant allele frequency differences were observed among sites. At Pohnpei, significant allele frequency differences in successive years were also apparent, possibly related to genetic variation among cohorts or between local spawning groups. The inter-annual differences at Pohnpei suggest that there may be further genetic structuring over relatively modest distances, a finding relative to determining management units for this commercially valuable species and suggests that future studies need to incorporate possible small-scale temporal or spatial components into study design.  相似文献   

10.
The global extent of macroalgal forests is declining, greatly affecting marine biodiversity at broad scales through the effects macroalgae have on ecosystem processes, habitat provision, and food web support. Networks of marine protected areas comprise one potential tool that may safeguard gene flow among macroalgal populations in the face of increasing population fragmentation caused by pollution, habitat modification, climate change, algal harvesting, trophic cascades, and other anthropogenic stressors. Optimal design of protected area networks requires knowledge of effective dispersal distances for a range of macroalgae. We conducted a global meta‐analysis based on data in the published literature to determine the generality of relation between genetic differentiation and geographic distance among macroalgal populations. We also examined whether spatial genetic variation differed significantly with respect to higher taxon, life history, and habitat characteristics. We found clear evidence of population isolation by distance across a multitude of macroalgal species. Genetic and geographic distance were positively correlated across 49 studies; a modal distance of 50–100 km maintained FST < 0.2. This relation was consistent for all algal divisions, life cycles, habitats, and molecular marker classes investigated. Incorporating knowledge of the spatial scales of gene flow into the design of marine protected area networks will help moderate anthropogenic increases in population isolation and inbreeding and contribute to the resilience of macroalgal forests. Implicaciones del Aislamiento por Distancia de Macroalgas para Redes de Áreas Marinas Protegidas  相似文献   

11.
McCormick MI 《Ecology》2006,87(5):1104-1109
Most marine populations are sustained by the entry of juveniles that have survived the larval phase, during which time most die. The number of survivors depends strongly on the quality of the eggs produced by spawning females, but it is not known how the social conditions under which breeding occurs influence the quality of larvae produced. Here I show that the density of females interacting with breeding mothers directly influences the size of larvae produced, through a stress-related mechanism. On the Great Barrier Reef of Australia, breeding pairs of a damselfish, Pomacentrus amboinensis, were isolated on habitat patches, and additional females that could not access the spawning site were added at four densities (0, 1, 3, or 6 females). Additional females increased aggressive interactions by mothers and increased the levels of the stress hormone, cortisol, in their ovaries, leading to reduced larval size. Neither egg output nor yolk size of the larvae was influenced by female density. Pairs breeding in isolation produced the largest larvae; current theory suggests that these larvae should contribute most to subsequent population replenishment events. This social mechanism may influence which females effectively contribute to the next generation and may promote resilience in patchy or isolated populations.  相似文献   

12.
This study investigated the utility of microsatellite markers for providing information on levels of population connectivity for a low dispersing reef fish in New South Wales (NSW), Australia, at scales ≤400 km. It was hypothesized that the temperate damselfish Parma microlepis, which produces benthic eggs and has limited post-settlement dispersal, would exhibit spatial genetic structure and a significant pattern of isolation-by-distance (IBD). A fully nested hierarchical sampling design incorporating three spatial scales (sites, location and regions, separated by 1–2, 10–50 and 70–80 km respectively) was used to determine genetic variability at seven microsatellite loci. Broad-scale genetic homogeneity and lack of IBD was well supported by single and multi-locus analyses. The proportion of the total genetic variation attributable to differences among regions, locations or sites was effectively zero (Φ/R-statistics ≤0.007). The geographic distribution of genetic diversity and levels of polymorphism (H E 0.21–0.95) indicate high mutation rates, large effective population sizes, and high rates of gene flow. Significant gene flow may be driven by factors influencing pre-settlement dispersal, including the East Australian Current (EAC) and habitat continuity. Genetic connectivity may not reflect demographically important connectivity, but does imply that P. microlepis populations are well connected from an evolutionary perspective. Total observed genetic diversity was accounted for within 1–2 km of reef and could be represented within small Marine Protected Areas. Reef fishes in NSW which have life histories similar to P. microlepis (e.g. pre-settlement durations ≥2 weeks) are also likely to exhibit genetic homogeneity. Genetic markers are, therefore, most likely to provide information on demographically relevant connectivity for species with lower dispersal capabilities, small population sizes, short life spans, and whose habitats are rare, or patchily distributed along-shore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Lesser MR  Jackson ST 《Ecology》2012,93(5):1071-1081
The processes underlying the development of new populations are important for understanding how species colonize new territory and form viable long-term populations. Life-history-mediated processes such as Allee effects and dispersal capability may interact with climate variability and site-specific factors to govern population success and failure over extended time frames. We studied four disjunct populations of ponderosa pine in the Bighorn Basin of north-central Wyoming to examine population growth spanning more than five centuries. The study populations are separated from continuous ponderosa pine forest by distances ranging from 15 to >100 km. Strong evidence indicates that the initial colonizing individuals are still present, yielding a nearly complete record of population history. All trees in each population were aged using dendroecological techniques. The populations were all founded between 1530 and 1655 cal yr CE. All show logistic growth patterns, with initial exponential growth followed by a slowing during the mid to late 20th century. Initial population growth was slower than expectations from a logistic regression model at all four populations, but increased during the mid-18th century. Initial lags in population growth may have been due to strong Allee effects. A combination of overcoming Allee effects and a transition to favorable climate conditions may have facilitated a mid-18th century pulse in population growth rate.  相似文献   

14.
Six Tridacna gigas populations were sampled in 1990 from locations throughout the central and northern Great Barrier Reef (GBR). Despite separations in excess of 1000 km, mean Nei's unbiased genetic distances among the populations was 0.0007. The complete lack of spatial variation observed among populations did not results from lack of genetic variability. Genetic variation within populations was high, with mean heterozygosities from 0.221 to 0.250. Gene frequencies were consistent with expectations under conditions of Hardy-Weinberg equilibrium. These data suggest panmixis, or random mating, throughout the highly connected reef system of the central and northern GBR. The large gene exchange among the giant clam populations has important implications for conservation management of one of the few large populations of T. gigas in the world. Small local effects are likely to be overcome in time by inputs from other sources. However, large genetic perturbations, particularly from up-current sources, may spread rapidly through the population.Contribution No. 561 from the Australian Institute of Marine Science  相似文献   

15.
Dispersal in coral reef fishes occurs predominantly during the larval planktonic stage of their life cycle. With relatively brief larval stages, damselfishes (Pomacentridae) are likely to exhibit limited dispersal. This study evaluates gene flow at three spatial scales in one species of coral reef damselfish, Dascyllus trimaculatus. Samples were collected at seven locations at Moorea, Society Islands, French Polynesia. Phylogenetic relationships and gene flow based on mitochondrial control region DNA sequences between these locations were evaluated (first spatial scale). Although spatial structure was not found, molecular markers showed clear temporal structure, which may be because pulses of settling larvae have distinct genetic composition. Moorea samples were then compared with individuals from a distant island (750 km), Rangiroa, Tuamotu Archipelago, French Polynesia (second spatial scale). Post-recruitment events (selection) and gene flow were probably responsible for the lack of structure observed between populations from Moorea and Rangiroa. Finally, samples from six Indo-West Pacific locations, Zanzibar, Indonesia, Japan, Christmas Island, Hawaii, and French Polynesia were compared (third spatial scale). Strong population structure was observed between Indo-West Pacific populations. Received: 26 May 2000 / Accepted: 10 October 2000  相似文献   

16.
Holyoak M  Loreau M 《Ecology》2006,87(6):1370-1377
Neutral community models embody the idea that individuals are ecologically equivalent, having equal fitness over all environmental conditions, and describe how the spatial dynamics and speciation of such individuals can produce a wide range of patterns of distribution, diversity, and abundance. Neutral models have been controversial, provoking a rush of tests and comments. The debate has been spurred by the suggestion that we should test mechanisms. However, the mechanisms and the spatial scales of interest have never clearly been described, and consequently, the tests have often been only peripherally relevant. At least two mechanisms are present in spatially structured neutral models. Dispersal limitation causes clumping of a species, which increases the strength of intraspecific competition and reduces the strength of interspecific competition. This may prolong coexistence and enhance local and regional diversity. Speciation is present in some neutral models and gives a donor-controlled input of new species, many of which remain rare or are short lived, but which directly add to species diversity. Spatial scale is an important consideration in neutral models. Ecological equivalence and equal fitness have implicit spatial scales because dispersal limitation and its emergent effects operate at population levels, and populations and communities are defined at a chosen spatial scale in recent neutral models; equality is measured relative to a metacommunity, and this necessitates defining the spatial scale of that metacommunity. Furthermore, dispersal has its own scales. Thorough empirical tests of neutral models will require both tests of mechanisms and pattern-producing ability, and will involve coupling theoretical models and experiments.  相似文献   

17.
A pilot study was conducted at Davies Reef on the central Great Barrier Reef between 20 November 1991 and 20 January 1992 to assess the suitability of settlement collectors for measuring larval settlement rates of echinoderms on coral reefs. The collectors were deployed for two months during summer when many echinoderm species are known to spawn. A total of 657 newly settled echinoderms were recovered from just 47 collectors, each having a volume of just 0.005 m3 but with a utilisable surface area of about 1.44 m2, indicating that competent-to-settle larvae were very abundant during the sampling period. Echinoids (7.8 sampler-1) and ophiuroids (5.6 sampler-1) were the most abundant groups on the collectors. Asteroids (0.2 sampler-1) and crinoids (0.3 sampler-1 were less common. The asteroids were all identified to species and included the crown-of-thorns starfish Acanthaster planci, Choriaster granulatus and Culcita novaeguineae. The newly settled echinoids could not be distinguished from each other but included Echinometra mathaei and Mespilia globulus. The abundance of each of the five different classes of echinoderms on the samplers was correlated with their abundance on the natural substratum. Significant spatial variability was found in settlement rates of echinoids over 1000s of metres and ophiuroids over 100s of metres, but not over smaller spatial scales. It is concluded that the collectors can provide a useful tool for monitoring spatial and temporal variability in settlement rates of echinoderms on coral reefs and for testing hypotheses about patterns of larval dispersal.  相似文献   

18.
Samples of an intertidal zoanthid, Zoanthus coppingeri, Haddon and Shackelton, 1891, were collected from three localities in the Great Barrier Reef region during 1992–1993, and subjected to allozyme electrophoretic analysis at seven polymorphic loci. The reduced ratio of observed to expected genotypic diversity indicated that populations were partly clonal, but they were not dominated by a few clones as occurs in some other cnidarians. Regular disturbance by wave action is postulated to prevent the formation of large stands of particular clones by clearing space and mixing genotypes over small scales. The sexual origin of clonal genotypes was confirmed by conformance to Hardy-Weinberg predictions of genotype frequencies at all but one locus. Values of the standardised genetic variance among populations, F ST , were highly significant between localities and between replicate sites within localities separated by only 50 m. Strong genetic structure has not previously been described in a Great Barrier Reef invertebrate species, and is considered to be the consequence of stochastic changes in gene frequencies as a result of low levels of gene flow. High clonal longevity and low recruitment rates may maintain genetic differences over long periods. Similar effects may be seen in other Great Barrier Reef invertebrate species with comparable reproductive patterns.  相似文献   

19.
Limited gene flow via the restricted dispersal of larvae and gametes is expected to result in the genetic differentiation of populations of clonal invertebrates on small spatial scales. However, occasional dispersal events over greater distances may generate sufficient gene flow to maintain genetic homogeneity. We applied a spatial autocorrelation approach that does not require a priori definitions of subdivision boundaries to examine genetic differentiation within a continuous population of the colonial ascidian Botryllus schlosseri (Pallas) at two allozyme and five polychromatism loci. Colonies were sampled in July 1992, on a 12 by 18 m grid superimposed on a shallow subtidal (1 to 3 m) population in the Damariscotta River estuary in Maine, USA. Low but significant levels of positive autocorrelation were detected over very small spatial scales (<5 m), with negative autocorrelation occurring on larger scales (>8 m). This pattern indicates significant genetic differentiation over distances of 8 to 21 m, and is consistent with genetic drift and inbreeding creating small scale genetic structure. Received: 18 October 1999 / Accepted: 11 July 2000  相似文献   

20.
Collections of about 50 individuals from each of five populations of the fissiparous holothurian species Stichopus chloronotus and four populations of Holothuria atra were made in 1999. These populations were located in the Torres Strait (western Pacific) and La Réunion (western Indian Ocean). Allozyme electrophoretic surveys of five (S. chloronotus) and six (H. atra) loci were conducted to compare patterns of asexual reproduction and to investigate connectivity between regions separated by large geographic distances. Deviations from genotype frequencies expected under Hardy-Weinberg equilibrium, mostly heterozygote excesses, were observed in all populations of both species. The maximum contribution of sexual reproduction (calculated as the maximum number of sexually produced individuals: sample size=N*/Ni) was similar for all S. chloronotus (58-64%) and H. atra (76-92%) populations, and on the same level as previously reported for midshelf reefs of the Great Barrier Reef. The higher values in the latter species indicated greater contributions of asexual reproduction to S. chloronotus populations. Variability was strongly reduced in S. chloronotus populations at La Réunion, with only one locus being variable in that population. When the dataset was reduced to one representative per multi-locus genotype per population to reduce the effect of asexual reproduction on calculations on gene flow, FST values were not significantly different from zero, suggesting high gene flow between these regions. However UPGMA cluster analyses using Rogers' genetic distance, roughly clustered populations by region. In the case of H. atra, pooled populations within each region were significantly different from those of the other region. Thus, although some restrictions in gene flow and greater genetic distances between the regions may exist, those differences are distinctly less than those reported in previous studies on echinoderms over similar geographic scales. Despite the importance of asexual reproduction for the maintenance of local population size, this study also confirmed that the potential for widespread dispersal mediated by sexually produced larvae is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号