首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
To augment mammal conservation in the Eastern Himalayan region, we assessed the resident 255 terrestrial mammal species and identified the 50 most threatened species based on conservation status, endemism, range size, and evolutionary distinctiveness. By using the spatial analysis package letsR and the complementarity core‐area method in the conservation planning software Zonation, we assessed the current efficacy of their protection and identified priority conservation areas by comparing protected areas (PAs), land cover, and global ecoregion 2017 maps at a 100 × 100 m spatial scale. The 50 species that were most threatened, geographically restricted, and evolutionarily distinct faced a greater extinction risk than globally nonthreatened and wide‐ranging species and species with several close relatives. Small, medium‐sized, and data‐deficient species faced extinction from inadequate protection in PAs relative to wide‐ranging charismatic species. There was a mismatch between current PA distribution and priority areas for conservation of the 50 most endangered species. To protect these species, the skewed regional PA distribution would require expansion. Where possible, new PAs and transboundary reserves in the 35 priority areas we identified should be established. There are adequate remaining natural areas in which to expand current Eastern Himalayan PAs. Consolidation and expansion of PAs in the EH requires strengthening national and regional transboundary collaboration, formulating comprehensive regional land‐use plans, diversifying conservation funding, and enhancing information sharing through a consolidated regional database.  相似文献   

2.
Abstract:  Intense deforestation causes massive species losses. These losses occur because the habitats supplanting primary forest are inadequate to sustain viable populations of forest-dependent species. Despite this, certain species do seem to persist within the secondary habitats that replace original forest. This implies that there is a special class of species that might survive the loss of primary forest. Such a result would significantly influence conservation plans and extinction predictions. We tested whether species that tolerate secondary habitats survive extensive habitat loss and whether the same degree of loss threatens species that are forest obligates. To identify purported "survivors," we compared the remaining range sizes of endemic birds, their abundances, and their degree of extinction threat. We did this within the remaining Atlantic Forest of Brazil, a region extremely rich in endemics but with only approximately 10% of its forest remaining. We found no survivors. Habitat loss threatens forest-obligate birds and those using secondary habitats equally.  相似文献   

3.
Abstract:   We studied the conservation status of Atlantic forest birds in 43 forest fragments ranging in size from 1 to 384 ha in the Viçosa region of southeastern Brazil. We compared data from 15 years of field work with historical records from the region, mainly originating from specimens collected by João Moojen during the 1930s. We used published studies associated with museum data and current field work to assess the decline of forest birds during the last 70 years and to relate their disappearance to forest fragmentation and destruction. At least 28 bird species have become locally extinct, 43 are critically endangered, and 25 are vulnerable, representing 60.7% of the original forest bird community known to exist in the region. Vulnerability to fragmentation differed among guilds, forest strata, and endemicity status. Birds that feed on fruit and seeds, and those that feed on insects, were more threatened than omnivores and carnivores. Nectarivorous species were less threatened than other guilds. Moreover, terrestrial and understory birds or birds using only one forest stratum also were more likely to have been threatened. Finally, Atlantic forest endemics were more likely to have become extinct than nonendemic species. In general, sensitivity to environmental disturbance at the local level was similar to the predicted vulnerability to regional disturbance derived from the literature. Our results indicate that a serious decline of Atlantic forest birds is underway and that many other species of birds, not previously recognized as threatened, are of conservation concern .  相似文献   

4.
Abstract:  A World Conservation Union (IUCN) regional red list is an objective assessment of regional extinction risk and is not the same as a list of conservation priority species. Recent research reveals the widespread, but incorrect, assumption that IUCN Red List categories represent a hierarchical list of priorities for conservation action. We developed a simple eight-step priority-setting process and applied it to the conservation of bees in Ireland. Our model is based on the national red list but also considers the global significance of the national population; the conservation status at global, continental, and regional levels; key biological, economic, and societal factors; and is compatible with existing conservation agreements and legislation. Throughout Ireland, almost one-third of the bee fauna is threatened (30 of 100 species), but our methodology resulted in a reduced list of only 17 priority species. We did not use the priority species list to broadly categorize species to the conservation action required; instead, we indicated the individual action required for all threatened, near-threatened, and data-deficient species on the national red list based on the IUCN's conservation-actions template file. Priority species lists will strongly influence prioritization of conservation actions at national levels, but action should not be exclusive to listed species. In addition, all species on this list will not necessarily require immediate action. Our method is transparent, reproducible, and readily applicable to other taxa and regions.  相似文献   

5.
Predicting extinctions as a result of climate change   总被引:3,自引:0,他引:3  
Widespread extinction is a predicted ecological consequence of global warming. Extinction risk under climate change scenarios is a function of distribution breadth. Focusing on trees and birds of the eastern United States, we used joint climate and environment models to examine fit and climate change vulnerability as a function of distribution breadth. We found that extinction vulnerability increases with decreasing distribution size. We also found that model fit decreases with decreasing distribution size, resulting in high prediction uncertainty among narrowly distributed species. High prediction uncertainty creates a conservation dilemma in that excluding these species under-predicts extinction risk and favors mistaken inaction on global warming. By contrast, including narrow endemics results in over-predicting extinction risk and promotes mistaken inaction on behalf of individual species prematurely considered doomed to extinction.  相似文献   

6.
As tropical regions are converted to agriculture, conservation of biodiversity will depend not only on the maintenance of protected forest areas, but also on the scope for conservation within the agricultural matrix in which they are embedded. Tree cover typically retained in agricultural landscapes in the neotropics may provide resources and habitats for animals, but little is known about the extent to which it contributes to conservation of animal species. Here, we explore the animal diversity associated with different forms of tree cover for birds, bats, butterflies, and dung beetles in a pastoral landscape in Nicaragua. We measured species richness and abundance of these four animal taxa in riparian and secondary forest, forest fallows, live fences, and pastures with high and low tree cover. We recorded over 20,000 individuals of 189 species including 14 endangered bird species. Mean abundance and species richness of birds and bats, but not dung beetles or butterflies, were significantly different among forms of tree cover. Species richness of bats and birds was positively correlated with tree species richness. While the greatest numbers of bird species were associated with riparian and secondary forest, forest fallows, and pastures with >15% tree cover, the greatest numbers of bat species were found in live fences and riparian forest. Species assemblages of all animal taxa were different among tree cover types, so that maintaining a diversity of forms of tree cover led to conservation of more animal species in the landscape as a whole. Overall, the findings indicate that retaining tree cover within agricultural landscapes can help conserve animal diversity, but that conservation efforts need to target forms of tree cover that conserve the taxa that are of interest locally. Preventing the degradation of remaining forest fragments is a priority, but encouraging farmers to maintain tree cover in pastures and along boundaries may also make an important contribution to animal conservation.  相似文献   

7.
Refining Biodiversity Conservation Priorities   总被引:3,自引:1,他引:3  
Abstract:  Although there is widespread agreement about conservation priorities at large scales (i.e., biodiversity hotspots), their boundaries remain too coarse for setting practical conservation goals. Refining hotspot conservation means identifying specific locations (individual habitat patches) of realistic size and scale for managers to protect and politicians to support. Because hotspots have lost most of their original habitat, species endemic to them rely on what remains. The issue now becomes identifying where this habitat is and these species are. We accomplished this by using straightforward remote sensing and GIS techniques, identifying specific locations in Brazil's Atlantic Forest hotspot important for bird conservation. Our method requires a regional map of current forest cover, so we explored six popular products for mapping and quantifying forest: MODIS continuous fields and a MODIS land cover (preclassified products), AVHRR, SPOT VGT, MODIS (satellite images), and a GeoCover Landsat thematic mapper mosaic (jpg). We compared subsets of these forest covers against a forest map based on a Landsat enhanced thematic mapper. The SPOT VGT forest cover predicted forest area and location well, so we combined it with elevation data to refine coarse distribution maps for forest endemic birds. Stacking these species distribution maps enabled identification of the subregion richest in threatened birds—the lowland forests of Rio de Janeiro State. We highlighted eight priority fragments, focusing on one with finer resolved imagery for detailed study. This method allows prioritization of areas for conservation from a region >1 million km2 to forest fragments of tens of square kilometers. To set priorities for biodiversity conservation, coarse biological information is sufficient. Hence, our method is attractive for tropical and biologically rich locations, where species location information is sparse.  相似文献   

8.
Traditional means of assessing representativeness of conservation value in protected areas depend on measures of structural biodiversity. The effectiveness of priority conservation areas at representing critical natural capital (CNC) (i.e., an essential and renewable subset of natural capital) remains largely unknown. We analyzed the representativeness of CNC‐conservation priority areas in national nature reserves (i.e., nature reserves under jurisdiction of the central government with large spatial distribution across the provinces) in China with a new biophysical‐based composite indicator approach. With this approach, we integrated the net primary production of vegetation, topography, soil, and climate variables to map and rank terrestrial ecosystems capacities to generate CNC. National nature reserves accounted for 6.7% of CNC‐conservation priority areas across China. Considerable gaps (35.2%) existed between overall (or potential) CNC representativeness nationally and CNC representation in national reserves, and there was significant spatial heterogeneity of representativeness in CNC‐conservation priority areas at the regional and provincial levels. For example, the best and worst representations were, respectively, 13.0% and 1.6% regionally and 28.9% and 0.0% provincially. Policy in China is transitioning toward the goal of an ecologically sustainable civilization. We identified CNC‐conservation priority areas and conservation gaps and thus contribute to the policy goals of optimization of the national nature reserve network and the demarcation of areas critical to improving the representativeness and conservation of highly functioning areas of natural capital. Moreover, our method for assessing representation of CNC can be easily adapted to other large‐scale networks of conservation areas because few data are needed, and our model is relatively simple.  相似文献   

9.
Many explorations of extinction probability have had a global focus, yet it is unclear whether variables that explain the probability of extinction at large spatial extents are the same as those at small spatial extents. Thus, we used nearly annual presence-absence records for the most recent 40 years of a 110-year data set from Palenque, Mexico, an area with ongoing deforestation, to explore which of >200 species of birds have probabilities of extirpation that are likely to increase. We assessed associations between long-term trends in species presence (i.e., detection in a given year) and body size, geographic range size, diet, dependence on forest cover, taxonomy, and ecological specialization. Our response variable was the estimated slope of a weighted logistic regression for each species. We assessed the relative strength of each predictor by means of a model ranking scheme. Several variables associated with high extinction probability at global extents, such as large body size or small geographic range size, were not associated with occurrence of birds over time at our site. Body size was associated with species loss at Palenque, but occurrence trends of both very large and very small species, particularly the latter, have declined, or the species have been extirpated. We found no association between declining occurrence trend and geographic range size, yet decline correlated with whether a species depends on forest (mean occupancy trend =-0.0380, 0.0263, and 0.0186 for, respectively, species with high, intermediate, or low dependence on forest) and with complex combinations of diet and foraging strata (e.g., occurrence of canopy insectivores and terrestrial omnivores has increased, whereas occurrence of mid-level frugivores and terrestrial granivores has decreased). Our findings emphasize that analyses of local areas are necessary to explicate extirpation risk at various spatial extents.  相似文献   

10.
Ecological Correlates of Extinction Proneness in Tropical Butterflies   总被引:7,自引:0,他引:7  
Abstract:  Widespread and rapid losses of natural habitats and biodiversity have made the identification of extinction-prone species a major challenge in conservation biology. We assessed the relative importance of biologically relevant species traits (e.g., body size, ecological specialization) obtained from published records to determine the extinction probability of butterflies in a highly disturbed tropical landscape (i.e., Singapore). We also developed a taxon-specific model to estimate the extinction proneness of butterflies in Southeast Asia. Logistic regression analyses showed that adult habitat specialization, larval host plant specificity, geographical distribution, sexual dichromatism, and congenor density were significant and independent determinants of butterfly extinctions in Singapore. Among these traits, specificity of larval host plant and adult habitat specialization were the best correlates of extinction risks. We used this phenomenological extinction-regression model to estimate the relative extinction proneness of 416 butterfly species in Southeast Asia. Our results illustrate the utility of available taxon-specific data for a localized area in estimating the extinction proneness of closely related species on a regional scale. When intensive field studies are not forthcoming, especially in regions suffering from rapid biodiversity losses (e.g., Southeast Asia), similar approaches could be used to estimate extinction threats for other taxonomic groups.  相似文献   

11.
The importance of large reserves has been long maintained in the scientific literature, often leading to dismissal of the conservation potential of small reserves. However, over half the global protected-area inventory is composed of protected areas that are <100 ha, and the median size of added protected area is decreasing. Studies of the conservation value of small reserves and fragments of natural area are relatively uncommon in the literature. We reviewed SCOPUS and WOK for studies on small reserve and fragment contributions to biodiversity conservation and ecosystem services, and fifty-eight taxon-specific studies were included in the review. Small reserves harbored substantial portions (upward of 50%) of regional species diversity for many taxa (birds, plants, amphibians, and small mammals) and even some endemic, specialist bird species. Unfortunately, small reserves and fragments almost always harbored more generalist and exotic species than large reserves. Community composition depended on habitat quality, surrounding land use (agricultural vs. urban), and reserve and fragment size, which presents opportunities for management and improvement. Small reserves also provided ecosystem services, such as pollination and biological pest control, and cultural services, such as recreation and improved human health. Limitations associated with small reserves, such as extinction debt and support of area-sensitive species, necessitate a complement of larger reserves. However, we argue that small reserves can make viable and significant contributions to conservation goals directly as habitat and indirectly by increasing landscape connectivity and quality to the benefit of large reserves. To effectively conserve biodiversity for future generations in landscapes fragmented by human development, small reserves and fragments must be included in conservation planning.  相似文献   

12.
Patterns of Rarity in the Birds of the Atlantic Forest of Brazil   总被引:1,自引:0,他引:1  
Patterns of rarity in species are generally explained by several factors: evolutionary history, spatial distribution, and genetic structure of each taxon. Human intervention also leads to or increases rarity in species. The discernment of causes of rarity is essential to the understanding of extinction patterns, and thus to devising conservation strategies. I examine patterns of rarity among bird species in the Atlantic forest region in Brazil, one of the most threatened ecosystems in the world. I assigned bird species to one of eight possible categories that differ in degree of vulnerability and that are based on three parameters of rarity: geographic distribution, habitat specificity, and population size. The Atlantic forest avifauna is a highly endangered group; 68% of the species are rare. Patterns of rarity among the birds in the region likely result from their specific ecologies or evolutionary histories. In addition, human alteration of natural habitats and hunting pressures have undoubtedly influenced rarity for a number of species.  相似文献   

13.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

14.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

15.
Abstract: New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst‐case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species. Probabilistic PD provides a framework for single‐species assessment that is well‐integrated with a broader measurement of impacts on PD owing to climate change and other factors.  相似文献   

16.
A major goal of conservation biologists is to identify critical areas for the conservation of biological diversity and then strategically include them in an efficient system of reserves. In general, however, reserve networks have been selected for different objectives, and most countries lack an evaluation of their reserves' ability to represent a percentage of the national diversity. This paper evaluates the effectiveness of a network of reserves to represent the species of mammals in Mexico. The focus of the analyses is on species and site level, evaluating the representation of all terrestrial mammals in the 30 most important reserves. The representation of all species, endemic species, endangered species, and species with restricted distributions in the reserves was assessed and compared. Endemic or endangered species with restricted distributions were expected to be less represented in reserves than were widespread species. The most important reserves for the conservation of mammals were determined with the use of complementarity analyses. Priority sites for the representation of all the species currently absent from the reserve network were then selected. The results have broad applications for conservation. First, 82% of the mammal species from Mexico were represented in the reserve network, which covers a small portion (3.8%) of the country. Second, this percentage is certainly larger as several reserves were not evaluated due to a lack of data. A priority for a national conservation strategy could be to conduct biological surveys in those reserves lacking inventories to evaluate their contribution to conservation. Third, in spite of its demonstrated value, Mexico's reserve network can be improved by designating complementary areas. Additional priority sites, where reserves are required to represent most gap species in the network, were identified. Finally, it is clear that this reserve network has limitations for maintaining biodiversity and ecosystem services at regional scales. A comprehensive conservation strategy has, therefore, to incorporate mechanisms that enhance the value of human-dominated landscapes for the maintenance of biodiversity.  相似文献   

17.
The native vascular plant flora of the Republic of Singapore has suffered the extinction of 594 out of a total 2277 species. These represent local, not global, species extinctions. Coastal habitats, including mangroves, have lost 39% of their species, while inland forests have last 29%. Epiphytic species (62% loss) appear particularly prone to extinction, which is reflected in a similar disposition exhibited by the Orchidaceae. Deforestation and disturbance have been the main cause of plant species extinction in Singapore. The rich mangrove epiphyte flora has been totally exterminated, and a number of tree species are reduced to populations of a few mature individuals. Many more species continue to survive than the species-area relationship would predict given the 99.8% loss of primary forest. This is interpreted as a result of the failure of equilibrium to be achieved yet in the remnant forest fragments, even after more than a century of isolation. Singapore's secondary forests appear to accrete plant diversity very slowly, even if contiguous with primary forest areas. We conclude that remnant fragments of primary tropical forest, even of very small size, can play a major role in the conservation of tropical biodiversity. The patterns of extinction observed in Singapore indicate that coastal and estuarine sites are in greatest demand for development and therefore must be given high priority for conservation despite their somewhat lower biodiversity. Epiphyte and orchid diversity appear to be very good indicators of the degree of disturbance suffered by a habitat in the humid tropics.  相似文献   

18.
I quantified local species richness of birds in different forest types and of beetles in spruce forests at different altitudes. In both cases I quantified timber production as a measure of land acquisition cost and used the ratio between the species richness and timber production as a measure of conservation cost-efficiency. I found a positive correlation between timber production and local species richness of birds as well as beetles, indicating that the forests most valuable for forestry are also the ones most valuable for biodiversity conservation. I used different selection procedures for combining sites in a reserve network to find the minimum set of sites that included all vulnerable species. The minimum set of sites for birds was 30% spruce forest, 30% pine forest, and 40% broad-leaved forest (the three main forest types). The minimum set of sites for the beetles was uniformly distributed along the altitudinal gradient. Both minimum sets were most cost-efficient for species conservation. I suggest that equal coverage of different productivity classes is more efficient for optimizing biodiversity conservation than over-representing low productivity sites. Less than 1% of Norwegian boreal forests have been protected as nature reserves. The reserve network is fairly representative with respect to altitude, but it is seriously skewed toward low productivity sites. The current network is suboptimal with respect to forest type representativeness, species protection, and cost-efficiency. This is a result of an inefficient strategy of selecting reserve sites and an unfortunate combination of selection criteria.  相似文献   

19.
Relationships between social status and levels of body reserves stored by members of greenfinch (Carduelis chloris) flocks in winter were investigated. In addition, the adjustment of reserves by birds of different rank to experimental changes in food predictability and to changed weather conditions were examined. Birds with low social status carried overall larger body reserves than high-ranked birds. The results of the experiments suggest that this was mainly because subordinates, due to their low priority to food access, perceived future foraging success as less predictable than dominants. In response to severe weather, which probably increased the risk of starvation for birds, dominants temporarily increased their reserves more than subordinates. This response also indicated that birds with low social status carried larger reserves than high-ranked birds, and demonstrated that dominants could increase food intake when there was a risk of energetic shortfall. The results suggest that fattening strategies in greenfinches depend on social status. In winter, subordinates may be forced to carry larger reserves than dominants to safeguard against social constraints in access to food during critical times. As body reserves may be costly to carry and acquire, this should reduce the probability of surviving the winter for subordinates compared to dominants. Received: 2 March 1995/Accepted after revision: 13 April 1996  相似文献   

20.
At least fifteen marine and coastal animal species have become extinct since the end of the Pleistocene. Analyses of the number of marine biogeographical provinces occupied by these species show that, contrary to the prevailing view that extinction is usually associated with a small range, at least five species (33%) had large ranges encompassing parts of two or more provinces. At least eight species occurred in areas that served as geographical refuges for taxa during the Pliocene and early Pleistocene. These refuges, in which primary planktonic productivity is generally very high, include the northwestern Atlantic and North Pacific. Extinctions in the northwestern Atlantic (four species) may be partly responsible for the subsequent success of human-introduced species in subtidal and open-coast intertidal habitats. Regions of high productivity deserve priority among marine areas to be protected from overexploitation and habitat destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号