首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
加拿大燃煤电厂水污染防治技术   总被引:2,自引:0,他引:2  
本文介绍了加拿大燃煤电厂废水排放标准,废水处理技术及废水池和灰场的防渗技术。  相似文献   

2.
邯郸热电厂是1958年建设的老厂,年排灰渣约12.5万吨。老灰场位于电厂东北部1公里处的滏阳河畔,灰场占地533亩。1981年储满停止使用,储灰约266万吨,储灰高度近10米。由于灰场离市区较近,每逢北风,粉煤灰便遮天蔽日地吹到市区北半部上空,到处飘落,周围菜田的蔬莱也落满了灰尘。灰场已成为邯郸市区大气的主要污染源之一。如何消除灰场飞灰对周围环境的污染,变废为宝,已成为当务之急。由于电厂对粉煤灰的利用起步较晚,要在短期内用掉灰场的灰是不可能的,唯一可行的办法就是  相似文献   

3.
原西德燃煤电厂固体废弃物填埋技术   总被引:1,自引:1,他引:0  
本文介绍了原西德燃煤电厂固体废弃物的来源及分类方法,燃煤电厂的固体废弃物基本上均属第Ⅰ类固体废弃物。结合西德燃煤电厂固体废弃物的填埋实例,系统介绍了固体废弃物填埋过程中对防渗系统及覆盖系统的要求,并探讨适合中国国情的防治电厂灰场对地下水的污染方法。  相似文献   

4.
燃煤电厂灰场环评技术评估中存在的问题与建议   总被引:1,自引:0,他引:1  
在比较我国一般工业固体废物贮存处置场、生活垃圾填埋、危险废物贮存和危险废物填埋污染控制标准的基础上,结合欧共体和德国对固体废物的分类和填埋要求、德国灰场的防渗实例和我国燃煤电厂实际运行灰场对地下水的环境影响,分析了《一般工业固体废物贮存、处置场污染控制标准》(GB 18599-2001)存在的问题,并建议在干灰场环评技术评估中,燃煤电厂的灰渣和脱硫石膏除非按GB 5086规定方法进行浸出试验获得的浸出液中第一类污染物超过GB 8978最高允许排放浓度外,均应按第I类一般工业固体废物处理;同时对燃煤电厂的干灰场场址选择等方面的环保要求提出了建议.  相似文献   

5.
灰水对地下水影响的初步探讨   总被引:1,自引:0,他引:1  
前言目前,我国火电厂对粉煤灰的处理普遍采用水力冲灰。灰水除少部分排入江、河、湖、海之外,大部分都以贮灰场的形式存放,均属于半闭路循环或半开放式系统,无防渗措施,使灰水任意下渗或蒸发,这种下渗就是污水返回地层的一种方式,而且数量大,面积广。据了解,目前我国平均排出粉煤灰量约为四千万吨/年,灰水比为1:2~1:  相似文献   

6.
针对老燃煤发电厂贮灰场回水逐年减少的状况,采取了在贮灰场水面上安装可移动式漂浮筏的措施,作为灰场回水取水的漂浮泵站,增加了灰场回水流量,解决了因回水不足而使用水库水作补水的问题。  相似文献   

7.
灞桥热电厂灰水回收系统防垢技术的研究   总被引:2,自引:0,他引:2  
通过对灞桥热电厂灰水系统和回水系统的现场查定试验,在摸清四收灰水水质的基础上,采用阻垢S-8等技术,对灰场加水进行防垢,取得了满意的防垢效果。在灰场浅层地下水流向的下游挖大口浅井,以收集灰场漏水,多年运行经验证明,回收的渗水水质稳定,不结垢。  相似文献   

8.
1前言由于韶关电厂燃用含氟量较高的粤北小煤窑煤,因此灰场灰水中F-超标排放(灰场灰水中广的浓度为16.0~22.0mg/L,广东省地方排放标准F-最高允许排放浓度是15mg/L,每年需缴排污费近百万元。这成为韶关电厂环保工作中的一个重要问题。为了解决灰水中氟的超标问题,我们首先对灰水排放情况进行了摸底调查。韶关电厂的灰水有以下几个特点:①排放灰水中只有氟超标,,超标率为20%;②灰水中氟的浓度由除尘器出口至灰场排放口沿途逐渐降低,大约减少2.3倍;③灰水pH值由除尘器出口至发场排放口沿流程逐渐升高,由4.0左右上升到7.0左…  相似文献   

9.
徐州发电厂川里湖二号储灰场占地面积为1500余亩,于1991年贮满停运,灰场粉煤灰脱水后细灰飞扬污染环境,群众反映强烈,自在灰场上种植柳树和草类后,不但防止了二次污染而且使灰场形成一片树林绿化的环境,获得很好的效果。  相似文献   

10.
赵庆久 《电力环境保护》2002,18(1):22-24,62
从结构、贮灰及排水方式3个方面,介绍了国内首次使用的大量直径直立圆筒薄壳堤海边灰场,对使用中发现的问题进行了分析,为海边灰场设计,运行管理提供经验。  相似文献   

11.
The weathering of municipal solid waste incineration (MSWI) residues consists of complicated phenomena. This makes it difficult to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash, which was relevant interactively to pH neutralization and formation of secondary minerals. In this study, mineralogical weathering indices for natural rock profiles were applied to fresh/landfilled MSWI bottom ash to investigate the relation of these weathering indices to landfill time and leaching concentrations of component elements. Tested mineralogical weathering indices were Weathering Potential Index (WPI), Ruxton ratio (R), Weathering Index of Parker (WIP), Vogt’s Residual Index (V), Chemical Index of Alternation (CIA), Chemical Index of Weathering (CIW), Plagioclase Index of Alternation (PIA), Silica–Titania Index (STI), Weathering Index of Miura (Wm), and Weatherability index of Hodder (Ks). Welch’s t-test accepted at 0.2% of significance level that all weathering indices could distinguish fresh and landfilled MSWI bottom ash. However, R and STI showed contrasted results for landfilled bottom ash to theoretical expectation. WPI, WIP, Wm, and Ks had good linearity with reclamation time of landfilled MSWI bottom ash. Therefore, these four indices might be applicable as an indicator to indentify fresh/weathered MSWI bottom ash and to estimate weathering time. Although WPI had weak correlation with leachate pH, other weathering indices had no significant correlation. In addition, all weathering indices could not explain leaching concentration of Al, Ca, Cu, and Zn quantitatively. Large difficulty to modify weathering indices correctly suggests that geochemical simulation including surface sorption, complexation with DOM, and other mechanisms seems to be the only way to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash.  相似文献   

12.
Natural weathering processes are significant mechanisms that noticeably affect the fundamental nature of incineration ash residues. To provide a greater understanding of these processes, a MSWI (mono)landfill site in the north east of the US was selected as the target for systematic investigation of the natural weathering of bottom ash residues. Samples of various ages were collected from locations A (1 yr), B (10 yrs), C (13-14 yrs) and D (20 yrs) of the landfill in 2009. We investigated the phase transformation of the collected bottom ash particles, neoformation processes as well as the behavior and distribution of certain heavy metals (Cu, Pb, Zn, Ni, and Cr) in the neoformed phases using optical microscopy, SEM-EDX, and bulk examinations. Key findings: at the preliminary stage, the waste metallic particles (Al, Fe, and Cu) and unstable minerals such as lime, portlandite, ettringite and hydrocalumite convert to oxide and hydroxide (hydrate) phases, calcite, alumina gel and gypsum. At the intermediate stage, the decomposition of melt products including magnetite spinels and metallic inclusions is triggered due to the partial dissolution of the melt glass. At the longer time horizon it is possible to track the breakdown of the glass phase, the extensive formation of calcite and anhydrite, Al-hydrates and more stable Fe-hydrates all through the older ash deposits. Among the dominant secondary phases, we propose the following order based on their direct metal uptake capacity: Fe-hydrates>Al-hydrates>calcite. Calcite was found to be the least effective phase for the direct sorption of heavy metals. Based on overall findings, a model is proposed that demonstrates the general trend of ash weathering in the landfill.  相似文献   

13.
The chemical and material composition of MSWI bottom ash depends on the particle size; this suggests that the mechanisms and kinetics of natural weathering are also a function of particle size. This paper reports the effects of short-term natural weathering on the leaching of heavy metals (mainly Pb, Cu and Zn) from MSWI bottom ash. Initial concentrations of heavy metals were higher for the smallest particle size fractions, but these levels fell dramatically during the first 50 days of weathering before levelling off. The main differences between size fractions were in the pH and the solubility of calcium and aluminium. For the initial stages of weathering and small size fractions, portlandite solubility seemed to control the pH. In contrast, for fractions bigger than 6 mm, the formation of ettringite was the reaction controlling the pH and the solubility of sulphates, aluminium and calcium.  相似文献   

14.
Weathering rates of base cations are crucial in critical load calculations and assessments of sustainable forestry. The weathering rate on a single site with detailed geological data can be modelled using the PROFILE model. For environmental assessments on a regional scale, the weathering rates for sites are scaled into regional maps. The step from sites to regional level requires focus on the spatial variation of weathering rates. In this paper, a method is presented by which weathering rates are calculated for 25589 Swedish sites with total elemental analysis for the soil. Based on a part of the results, a methodology for creating area covering maps by geostatistical analysis and kriging is described. A normative reconstruction model was used to transform total elemental analysis to mineralogy. Information from the Swedish Forest Inventory database and other databases were used to derive texture and other important information for the sites, e.g. climate, deposition and vegetation data. The calculated weathering rates show a regional pattern that indicates possibilities for interpolation of data in large parts of Sweden. Geostatistical analysis of an area in southern Sweden shows different properties for different base cations. Kriging was performed for potassium to demonstrate the method. It was concluded that different base cations and different regions have to be analysed separately, in order to optimise the kriging method.  相似文献   

15.
Municipal solid waste incineration (MSWI) bottom ash contains a considerable amount of Fe-rich constituents. The behaviors of these constituents, such as dissolution and precipitation, are quite important as they regulate the distribution of a series of ions between the liquid (percolated fluid) and solid (ash deposit) phases. This paper studied both fresh and weathered MSWI bottom ash from the mineralogical and geochemical viewpoint by utilizing optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and powder X-ray diffraction. The analysis results revealed that for the fresh bottom ash, iron preferentially existed in the chemical forms of spinel group (mainly Fe(3)O(4), and a series of Al- or Ti- substituted varieties), metallic inclusions (including Fe-P, Fe-S, Fe-Cu-Pb), hematite (Fe(2)O(3)) and unburned iron pieces. In the 1-20 years weathered bottom ash collected from a landfill site, interconversions among these Fe-rich constituents were identified. Consequently, numerous secondary products were developed, including goethite (α-FeOOH), lepidocrocite (γ-FeOOH), hematite, magnetite, wustite (FeO), Fe-Si-rich gel phase. Of all these transformation products, hydrous iron oxides were the most common secondary minerals. Quantitative chemical analysis of these secondary products by SEM/EDX disclosed a strong association between the newly formed hydrous iron oxides and heavy metals (e.g. Pb, Zn, Ni, and Cu). The results of this study suggest that the processes of natural weathering and secondary mineralization contribute to reduction of the potential risks of heavy metals to the surrounding environments.  相似文献   

16.
The leaching properties of trace elements in wood ash were examined to evaluate the safety of using woody biomass ash. Boron and selenium were detected in high concentrations not only in ash collected from an electric furnace but also in combustion ash from a small wood stove. As for the leaching of trace elements, the influence of calcium compounds on boron and selenium in wood ash is proposed. The leaching of trace elements is enhanced when calcium carbonate is the calcium compound in ash, although it is inhibited in the case of portlandite. There is little information in the literature that can be used to determine the effective use of wood biomass ash, thus limiting the development of woody biomass for applications such as thermal power generation.  相似文献   

17.
Leaching of soluble salts formed as the result of pyrite oxidation and primary mineral weathering is a major process in mine soil development. A microcosm experiment was designed to study leaching rates from mine soil columns under controlled laboratory conditions. Objectives of this experiment were to investigate the effect of leaching and the effect of fly ash amelioration on mid- to long-term chemical soil properties, and to test whether the results are qualitatively comparable to long-term field studies along a site chronosequence. The leaching experiment was conducted over a period of 850 days representing a kind of time-lapse picture due to high water fluxes. Leaching resulted in more favourable mid- to long-term properties of mine site topsoils, especially a reduced risk for acidity and salt stress. Ash amelioration decreases leaching rates by increasing pH and Al and Fe precipitation. It could be shown that the results of the column leaching studies are qualitatively in good agreement with field observations at least for long-term considerations. By enhancing the leaching process mid- to long-term chemical soil properties can be estimated.  相似文献   

18.
A study on the chemical stability of municipal solid waste (MSW) bottom ash submitted to weathering was carried out in order to identify and quantify the physico-chemical maturation mechanisms in a large heap (375 tonnes) over a period of about 18 months. The mineralogy and chemical composition of MSW bottom ash were analysed on fresh and maturated material. Calcite is the predominant newly formed mineral during bottom ash maturation, combined with aluminium hydroxides and various sulphates. Lead and zinc are trapped primarily by newly formed carbonates. Monitoring of the pore water and the outlet leachates revealed a marked contrast in the physico-chemical conditions within the heap and at the outlet. The salinity of the fluids peaked at around 16 g/l within the first few weeks and then progressively decreased to fluctuate between 5 and 8 g/l. Due to the high pH of the pore water, the average concentrations of heavy metals in the heap are high: 42.7, 9.6 and 0.8 mg/l for Cu, Pb and Zn. At the heap outlet, however, the leachates are buffered by carbonate precipitation due to equilibration with atmospheric CO2. Copper complexed as a chloride at the outlet remains at a relatively high concentration (10.2 mg/l), whereas Pb and Zn concentrations are below the limit of detection (<25 microg/l). A mass balance carried out over the 18 months of monitoring indicated that 86% of remobilized material within the heap is evacuated from the system. Within the heap, carbonation trapped 43 and 54% of the calcium and bicarbonate flux. The copper, lead and zinc flux at the heap outlet represent only 34, 18 and 19% of the actual remobilized mass of heavy metals.  相似文献   

19.
In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1–2 mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required.Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h.Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation.  相似文献   

20.
Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations, however, have had a strong emphasis on lab experiments with little focus on full-scale bottom ash upgrading methods. The introduction of regulatory limit values restricting leaching from utilized bottom ashes, has created a need for a better understanding of how lab-scale experiences can be utilized in full-scale bottom ash upgrading facilities, and the possibilities for complying with the regulatory limit values. A range of Danish research and development projects have, during 1997-2005, investigated important techniques for bottom ash upgrading. The primary focus has been placed on curing/aging, washing with and without additives, organic matter, sampling techniques, utilization options, and assessment tools. This paper provides an overview of these projects. The main results and experiences are discussed and evaluated with respect to bottom ash upgrading and utilization. Based on this discussion, development needs and potential management strategies are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号