首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ABSTRACT: We have developed an approach which examines ecosystem function and the potential effects of climatic shifts. The Lake McDonald watershed of Glacier National Park was the focus for two linked research activities: acquisition of baseline data on hydrologic, chemical and aquatic organism attributes that characterize this pristine northern rocky mountain watershed, and further developing the Regional Hydro-Ecosystem Simulation System (RHESSys), a collection of integrated models which collectively provide spatially explicit, mechanistically-derived outputs of ecosystem processes, including hydrologic outflow, soil moisture, and snow-pack water equivalence. In this unique setting field validation of RHESSys, outputs demonstrated that reasonable estimates of SWE and streamflow are being produced. RHESSys was used to predict annual stream discharge and temperature. The predictions, in conjunction with the field data, indicated that aquatic resources of the park may be significantly affected. Utilizing RHESSys to predict potential climate scenarios and response of other key ecosystem components can provide scientific insights as well as proactive guidelines for national park management.  相似文献   

2.
Stratton, Benjamin T., Venakataramana Sridhar, Molly M. Gribb, James P. McNamara, and Balaji Narasimhan, 2009. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. Journal of the American Water Resources Association (JAWRA) 45(6):1390‐1408. Abstract: The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed, near Boise Idaho to investigate its water balance components both temporally and spatially. Calibrating and validating SWAT is necessary to enable our understanding of the water balance components in this semiarid watershed. Daily streamflow data from four streamflow gages were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event‐based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain‐on‐snow (ROS) events during the validation period between 2005 and 2007. Especially, soil moisture was generally underestimated compared with observations from two monitoring pits. However, our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture, and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion‐related snowmelt or ROS weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting), and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction.  相似文献   

3.
Abstract: The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south‐central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight‐day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log‐transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base‐flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash‐Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log‐space) for the full 15‐month period, ?0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ?32%. The contribution of parameter uncertainties to model discrepancy was evaluated.  相似文献   

4.
ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.  相似文献   

5.
ABSTRACT: Infiltration processes at the plot scale are often described and modeled using a single effective hydraulic conductivity (Kg) value. This can lead to errors in runoff and erosion prediction. An integrated field measurement and modeling study was conducted to evaluate: (1) the relationship among rainfall intensity, spatially variable soil and vegetation characteristics, and infiltration processes; and (2) how this relationship could be modeled using Green and Ampt and a spatially distributed hydrologic model. Experiments were conducted using a newly developed variable intensity rainfall simulator on 2 m by 6 m plots in a rangeland watershed in southeastern Arizona. Rainfall application rates varied between 50 and 200 mm/hr. Results of the rainfall simulator experiments showed that the observed hydrologic response changed with changes in rainfall intensity and that the response varied with antecedent moisture condition. A distributed process based hydrologic simulation model was used to model the plots at different levels of hydrologic complexity. The measurement and simulation model results show that the rainfall runoff relationship cannot be accurately described or modeled using a single Kg value at the plot scale. Multi‐plane model configurations with infiltration parameters based on soil and plot characteristics resulted in a significant improvement over single‐plane configurations.  相似文献   

6.
Mittman, Tamara, Lawrence E. Band, Taehee Hwang, and Monica Lipscomb Smith, 2012. Distributed Hydrologic Modeling in the Suburban Landscape: Assessing Parameter Transferability from Gauged Reference Catchments. Journal of the American Water Resources Association (JAWRA) 48(3): 546-557. DOI: 10.1111/j.1752-1688.2011.00636.x Abstract: Distributed, process-based models of catchment hydrologic response are potentially useful tools for the assessment of Low Impact Development (LID) techniques in urbanized catchments. Their application is often limited, however, by the lack of continuous streamflow records to calibrate poorly constrained parameters. This article examines the transferability of soil and groundwater parameters from a forested reference catchment to a nearby suburban catchment. We use the Regional Hydro-Ecologic Simulation System (RHESSys) to develop hydrologic models of one gauged forested and one ungauged suburban catchment within the Baltimore Ecosystem Study (BES) study area. We use a parameter uncertainty framework to calibrate soil and groundwater parameters for the forested catchment, and discrete measurements of streamflow from the suburban catchment to assess parameter transferability. Results indicate that the transfer of soil and groundwater parameters from forested reference to nearby suburban catchments is viable, with performance measures for the suburban catchment often exceeding those for the forested catchment. We propose that the simplification of hydrologic processes in urbanized catchments may account for the increase in model performance in the suburban catchment.  相似文献   

7.
In recent years, watershed modelers have put increasing emphasis on capturing the interaction of landscape hydrologic processes instead of focusing on streamflow at the watershed outlet alone. Understanding the hydrologic connectivity between landscape elements is important to explain the hydrologic response of a watershed to rainfall events. The Soil and Water Assessment Tool+ (SWAT+) is a new version of SWAT with improved runoff routing capabilities. Subbasins may be divided into landscape units (LSUs), e.g., upland areas and floodplains, and flow can be routed between these LSUs. We ran three scenarios representing different extents of connectivity between uplands, floodplains, and streams. In the first and second scenarios, the ratio of channelized flow from the upland to the stream and sheet flow from the upland to the floodplain was 70/30 and 30/70, respectively, for all upland/floodplain pairs. In the third scenario, the ratio was calculated for each upland/floodplain pair based on the upland/floodplain area ratio. Results indicate differences in streamflow were small, but the relative importance of flow components and upland areas and floodplains as sources of surface runoff changed. Also, the soil moisture in the floodplains was impacted. The third scenario was found to provide more realistic results than the other two. A realistic representation of connectivity in watershed models has important implications for the identification of pollution sources and sinks.  相似文献   

8.
This study applied three statistical downscaling methods: (1) bias correction and spatial disaggregation at daily time scale (BCSD_daily); (2) a modified version of BCSD which reverses the order of spatial disaggregation and bias correction (SDBC), and (3) the bias correction and stochastic analog method (BCSA) to downscale general circulation model daily precipitation outputs to the subbasin scale for west‐central Florida. Each downscaled climate input dataset was then used in an integrated hydrologic model to examine differences in ability to simulate retrospective streamflow characteristics. Results showed the BCSD_daily method consistently underestimated mean streamflow because the highly spatially correlated small precipitation events produced by this method resulted in overestimation of evapotranspiration. Highly spatially correlated large precipitation events produced by the SDBC method resulted in overestimation of the standard deviation of wet season daily streamflow and the magnitude/frequency of high streamflow events. BCSA showed better performance than the other methods in reproducing spatiotemporal statistics of daily precipitation and streamflow. This study demonstrated differences in statistical downscaling techniques propagate into significant differences in streamflow predictions, and underscores the need to carefully select a downscaling method that reproduces precipitation characteristics important for the hydrologic system under consideration.  相似文献   

9.
ABSTRACT: Most hydrologic models require input parameters which represent the variability found across an entire landscape. The estimation of such parameters is very difficult, particularly on rangeland. Improved model parameter estimation procedures are needed which incorporate the small-scale and temporal variability found on rangeland. This study investigates the use of a surface soil classification scheme to partition the spatial variability in hydrologic and interrill erosion processes in a sagebrush plant community. Four distinct microsites were found to exist within the sagebrush coppice-dune dune-interspace complex. The microsites explained the majority of variation in hydrologic and interrill erosion response found on the site and were discernable based on readily available soil and vegetation information. The variability within each microsite was quite low and was not well correlated with soil and vegetation properties. The surface soil classification scheme defined in this study can be quite useful for defining sampling procedures, for understanding hydrologic and erosion processes, and for parameterizing hydrologic models for use on sagebrush range-land.  相似文献   

10.
ABSTRACT: Deterministic models of watershed hydrology require accurate a priori estimates of soil, vegetation, and watershed parameters. Physical fidelity of these values to those of the prototype natural watershed is essential. One vegetation parameter most neglected, perhaps because it is least understood, is plant root activity. Plant roots directly or indirectly affect many hydrologic processes, including evaporation, transpiration, soil moisture, and ground water. One of their more important functions is in opening surface-connected hydraulic pathways for rainfall penetration. This paper presents the results of a study in which available information on roots has been applied in hydrologic computations.  相似文献   

11.
Abstract: Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validation is performed at the river basin outlet without accounting for spatial variations in hydrological parameters within the subunits. In this study, we calibrated the model to capture the spatial variations in runoff at subwatershed level to assure local water balance, and validated the streamflow at key gaging stations along the river to assure temporal variability. Ohio and Arkansas‐White‐Red River Basins of the United States were modeled using Soil and Water Assessment Tool (SWAT) for the period from 1961 to 1990. R2 values of average annual runoff at subwatersheds were 0.78 and 0.99 for the Ohio and Arkansas Basins. Observed and simulated annual and monthly streamflow from 1961 to 1990 is used for temporal validation at the gages. R2 values estimated were greater than 0.6. In summary, spatially distributed calibration at subwatersheds and temporal validation at the stream gages accounted for the spatial and temporal hydrological patterns reasonably well in the two river basins. This study highlights the importance of spatially distributed calibration and validation in large river basins.  相似文献   

12.
ABSTRACT: Many hydrologic models have input data requirements that are difficult to satisfy for all but a few well-instrumented, experimental watersheds. In this study, point soil moisture in a mountain watershed with various types of vegetative cover was modeled using a generalized regression model. Information on sur-ficial characteristics of the watershed was obtained by applying fuzzy set theory to a database consisting of only satellite and a digital elevation model (DEM). The fuzzy-c algorithm separated the watershed into distinguishable classes and provided regression coefficients for each ground pixel. The regression model used the coefficients to estimate distributed soil moisture over the entire watershed. A soil moisture accounting model was used to resolve temporal differences between measurements at prototypical measurement sites and validation sites. The results were reasonably accurate for all classes in the watershed. The spatial distribution of soil moisture estimates corresponded accurately with soil moisture measurements at validation sites on the watershed. It was concluded that use of the regression model to distribute soil moisture from a specified number of points can be combined with satellite and DEM information to provide a reasonable estimation of the spatial distribution of soil moisture for a watershed.  相似文献   

13.
ABSTRACT: Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri‐County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.  相似文献   

14.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

15.
In 1988, the Florida Institute of Phosphate Research (FIPR) funded project to develop an advanced hydrologic model for shallow water table systems. The FIPR hydrologic model (FHM) was developed to provide an improved predictive capability of the interactions of surface water and ground water using its component models, HSPF and MODFLOW. The Integrated Surface and Ground Water (ISGW) model was developed from an early version of FHM and the two models were developed relatively independently in the late 1990s. Hydrologic processes including precipitation, interception, evapotranspiration, runoff, recharge, streamflow, and base flow are explicitly accounted for in both models. Considerable review of FHM and ISGW and their applications occurred through a series of projects. One model evolved, known as the Integrated Hydrological Model IHM. This model more appropriately describes hydrologic processes, including evapotranspiration fluxes within small distributed land‐based discretization. There is a significant departure of many IHM algorithms from FHM and ISGW, especially for soil water and evapotranspiration (ET). In this paper, the ET concepts in FHM, ISGW, and IHM will be presented. The paper also identifies the advantages and data costs of the improved methods. In FHM and IHM, ground water ET algorithms of the MODFLOW ET package replace those of HSPF (ISGW used a different model for ground water ET). However, IHM builds on an improved understanding and characterization of ET partitioning between surface storages, vadose zone storage, and saturated ground water storage. The IHM considers evaporative flux from surface sources, proximity of the water table to land surface, relative moisture condition of the unsaturated zone, thickness of the capillary zone, thickness of the root zone, and relative plant cover density. The improvements provide a smooth transition to satisfy ET demand between the vadose zone and deeper saturated ground water. While the IHM approach provides a more sound representation of the actual soil profile than FHM, and has shown promise at reproducing soil moisture and water table fluctuations as well as field measured ET rates, more rigorous testing is necessary to understand the robustness and/or limitations of this methodology.  相似文献   

16.
River networks based on Digital Elevation Model (DEM) data differ depending on the DEM resolution, accuracy, and algorithms used for network extraction. As spatial scale increases, the differences diminish. This study explores methods that identify the scale where networks obtained by different methods agree within some margin of error. The problem is relevant for comparing hydrologic models built around the two networks. An example is the need to compare streamflow prediction from the Hillslope Link Model (HLM) operated by the Iowa Flood Center (IFC) and the National Water Model (NWM) operated by the National Water Center of the National Oceanic and Atmospheric Administration. The HLM uses landscape decomposition into hillslopes and channel links while the NWM uses the NHDPlus dataset as its basic spatial support. While the HLM resolves the scale of the NHDPlus, the outlets of the latter do not necessarily correspond to the nodes of the HLM model. The authors evaluated two methods to map the outlets of NHDPlus to outlets on the IFC network. The methods compare the upstream areas of the channels and their spatial location. Both methods displayed similar performance and identified matches for about 80% of the outlets with a tolerance of 10% in errors in the upstream area. As the aggregation scale increases, the number of matches also increases. At the scale of 100 km2, 90% of the outlets have matches with tolerance of 5%. The authors recommend this scale for comparing the HLM and NWM streamflow predictions.  相似文献   

17.
Fire is a primary agent of landcover transformation in California semi-arid shrubland watersheds, however few studies have examined the impacts of fire and post-fire succession on streamflow dynamics in these basins. While it may seem intuitive that larger fires will have a greater impact on streamflow response than smaller fires in these watersheds, the nature of these relationships has not been determined. The effects of fire size on seasonal and annual streamflow responses were investigated for a medium-sized basin in central California using a modified version of the MIKE SHE model which had been previously calibrated and tested for this watershed using the Generalized Likelihood Uncertainty Estimation methodology. Model simulations were made for two contrasting periods, wet and dry, in order to assess whether fire size effects varied with weather regime. Results indicated that seasonal and annual streamflow response increased nearly linearly with fire size in a given year under both regimes. Annual flow response was generally higher in wetter years for both weather regimes, however a clear trend was confounded by the effect of stand age. These results expand our understanding of the effects of fire size on hydrologic response in chaparral watersheds, but it is important to note that the majority of model predictions were largely indistinguishable from the predictive uncertainty associated with the calibrated model - a key finding that highlights the importance of analyzing hydrologic predictions for altered landcover conditions in the context of model uncertainty. Future work is needed to examine how alternative decisions (e.g., different likelihood measures) may influence GLUE-based MIKE SHE streamflow predictions following different size fires, and how the effect of fire size on streamflow varies with other factors such as fire location.  相似文献   

18.
ABSTRACT: Herein, a recently developed methodology, Support Vector Machines (SVMs), is presented and applied to the challenge of soil moisture prediction. Support Vector Machines are derived from statistical learning theory and can be used to predict a quantity forward in time based on training that uses past data, hence providing a statistically sound approach to solving inverse problems. The principal strength of SVMs lies in the fact that they employ Structural Risk Minimization (SRM) instead of Empirical Risk Minimization (ERM). The SVMs formulate a quadratic optimization problem that ensures a global optimum, which makes them superior to traditional learning algorithms such as Artificial Neural Networks (ANNs). The resulting model is sparse and not characterized by the “curse of dimensionality.” Soil moisture distribution and variation is helpful in predicting and understanding various hydrologic processes, including weather changes, energy and moisture fluxes, drought, irrigation scheduling, and rainfall/runoff generation. Soil moisture and meteorological data are used to generate SVM predictions for four and seven days ahead. Predictions show good agreement with actual soil moisture measurements. Results from the SVM modeling are compared with predictions obtained from ANN models and show that SVM models performed better for soil moisture forecasting than ANN models.  相似文献   

19.
20.
This study assesses a large‐scale hydrologic modeling framework (WRF‐Hydro‐RAPID) in terms of its high‐resolution simulation of evapotranspiration (ET) and streamflow over Texas (drainage area: 464,135 km2). The reference observations used include eight‐day ET data from MODIS and FLUXNET, and daily river discharge data from 271 U.S. Geological Survey gauges located across a climate gradient. A recursive digital filter is applied to decompose the river discharge into surface runoff and base flow for comparison with the model counterparts. While the routing component of the model is pre‐calibrated, the land component is uncalibrated. Results show the model performance for ET and runoff is aridity‐dependent. ET is better predicted in a wet year than in a dry year. Streamflow is better predicted in wet regions with the highest efficiency ~0.7. In comparison, streamflow is most poorly predicted in dry regions with a large positive bias. Modeled ET bias is more strongly correlated with the base flow bias than surface runoff bias. These results complement previous evaluations by incorporating more spatial details. They also help identify potential processes for future model improvements. Indeed, improving the dry region streamflow simulation would require synergistic enhancements of ET, soil moisture and groundwater parameterizations in the current model configuration. Our assessments are important preliminary steps towards accurate large‐scale hydrologic forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号