首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PHOENICS Computational Fluid Dynamics (CFD) software package has been used with a standard k- turbulence model to simulate the three-dimensional dispersion of air pollutants in an urban street canyon. In all cases, a vortex was formed within the street canyon, characterized by updrafts near the upwind buildings and down-drafts near the downwind buildings. Contours of pollutant concentrations over a transverse vertical plane at mid-canyon show pollutants circulating within the vortex, with higher concentrations at the leeward face than at the windward faces, and higher concentrations above downwind buildings than above upwind buildings. Longitudinal distributions of pollutant concentrations at leeward and windward faces are characterized by higher concentrations at mid-block and lower concentrations at the ends. These results agree qualitatively with previous wind tunnel findings such as those of Hoydysh and Dabberdt (1988) and Wedding et al. (1977). The results also suggest that the k- turbulence model is satisfactory for simulating the effect of turbulence on dispersion of pollutants in street canyons  相似文献   

2.
Poly (-caprolactone) (PCL), poly (-valerolactone) (PVL), poly (-caprolactone-co--valerolactone) [P(CL-co-VL)], and poly (-caprolactone-co-ethylene oxide-co--caprolactone) (PCL-PEO-PCL) were synthesized by ring-opening and diol-initiated polymerization of -caprolactone and -valerolactone. The degradation of the samples by chemical hydrolysis and in a soil burial test was evaluated. It was found that PCL, PVL, and P(CL-co-VL) degrade mainly enzymatically. The rate of degradation depends on their molecular weight, chemical structure, composition, and morphology. PCL-PEO-PCL block copolymers exhibit a repelling effect to the microorganisms in the soil, which depends on the molecular weight and relative amount of PEO block in the copolymer.  相似文献   

3.
    
Microscale computational fluid dynamics (CFD) modelsdeveloped in different European countries were applied towell defined test cases comprising a variety of 2 and 3dimensional configurations for which measurements from windtunnel or field studies were available. This paper presentsthe results of five CFD codes employing the widely used`standard k--model' (CHENSI, CHENSI-2, MIMO, MISKAM, TASCflow) for a street canyon in Hannover, Germany(Göttinger Strasse). Firstly the characteristics of theflow field predicted by the different codes are comparedwith high spatial resolution wind tunnel measurements;secondly the calculated concentration fields are comparedwith field and wind tunnel data. Both agreements (e.g. forthe general flow and concentration fields) anddisagreements (e.g. for the level of concentration) areobserved in the comparison. The discussion aims atexplaining the differences along with giving somesuggestions to CFD model users on how to calculate suchcomplex flows, but also to experimentalists on whereconcentration measurements should be taken in order to bemore representative for a whole street and to avoiddistinct local effects.  相似文献   

4.
Novel (-caprolactone)-based copolymers of different compositions were synthesized by allowing methyl iodide to react with the polycarbanion that resulted from the action of lithium diisopropylamide on poly(-caprolactone) in THF at –70°C under argon atmosphere. The copolymers were characterized by various techniques, namely 1H nuclear magnetic resonance, size exclusion chromatography, differential scanning calorimetry, x-ray diffraction and viscoelasticimetry. They were submitted to hydrolytic and lipase-catalyzed enzymatic degradation in comparison with genuine PCL. The Young modulus depended on the degree of methylation. In contrast, loss angle and glass transition temperature did not depend on this parameter. It is shown that the lipase-catalyzed degradation of methylated PCL is much slower than in the case of genuine PCL.  相似文献   

5.
The thermal effects on the airflow within a street canyon, which are produced by the variation of direct solar heating of the street sides and ground, are examined in this article. The investigation is based on the experimental results of the Nantes'99 campaign and numerical simulations performed with the Computational Fluid Dynamics (CFD) code CHENSI using the standard k- model. The Nantes'99 experimental campaign was performed in a North-to-South oriented central street canyon of Nantes, France. It was observed that a thin thermal layer develops locally within a few centimetres from the heated wall. It is anticipated that, the convective flow close to the windward wall, which was visualised during the experiment, carries air masses from the street level upwards, where normally cleaner air is transported. Consequently, thermal effects may be important for the air quality in the street.Based on the temperature and wind flow measurements, the flow and temperature fields were simulated first in two dimensions with the CFD code CHENSI. It was found that CHENSI overestimates the thermal effects on the canyon airflow showing the main re-circulation simulated in the isothermal case to change into two counter-rotating vortices after the inclusion of the heating of the windward wall. A reason for this overestimation is possibly the temperature wall function implemented for such thin thermal boundary layers in conjunction with the limitations in grid resolution.  相似文献   

6.
In order to assess feasibility of tropical starches (sago and cassava starches) as biodegradable plastic materials, blending with poly(-caprolactone) (PCL), a biodegradable polymer, was carried out. It was confirmed that the physical properties (tensile strength and elongation) of PCL/sago and PCL/cassava blends were similar to those of PCL/corn blend, suggesting that sago and cassava starches can also be blended with PCL for production of biodegradable plastic. However, the properties of all PCL/starch blends were still low compared with those of polyethylene. Enzymatic degradability evaluation showed that lipase degradation of PCL and-amylase degradation of starch increased as the starch content in the blend increased. Burial test of the blends for 1, 3, and 5 months was carried out and the rate of degradation of the PCL/sago blend was confirmed to be slower than those of PCL/corn and PCL/cassava blends. Observation of the film blends structure by scanning electron microscope revealed that the starch was dispersed in a PCL continuous phase. Furthermore, changes in the film surface before and after enyzme treatments were observed.  相似文献   

7.
Poly(-caprolactone) (PCL) was blended with diatomaceous earth (diatomite) and irradiated with -rays to introduce cross-linking between PCL molecules or both components. The unwashed diatomite containing a little of a volatile component showed high efficiency of introduction of cross-linking, whereas that with no volatile component showed low efficiency of introduction of cross-linking. Elongational viscosity, melt viscosity, and modulus of PCL/diatomite blend irradiated at various doses were significantly improved. Enzymatic degradation of the PCL/diatomite blend became faster than that of the PCL, though that of the blend irradiated became slower.  相似文献   

8.
Biodegradable hydrogels prepared by -irradiation from microbial poly(amino acid)s are reviewed. pH-sensitive hydrogels were prepared by means of -irradiation of poly(-glutamic acid) (PGA) produced byBacillus subtilis IFO3335 and poly(-lysine) (PL) produced byStreptomyces albulus in aqueous solutions. The preparation conditions, swelling equilibria, hydrolytic degradation, and enzymatic degradation of these hydrogels were studied. A hydrogel with a wide variety of swelling behaviors has been produced by -irradiation from a mixture solution of PGA and PL.Paper presented at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, New Hampshire, USA.  相似文献   

9.
Copolyesters containing poly(ethylene terephthalate) (PET) and poly(-caprolactone) (PCL) were synthesized from PET and PCL homopolymers by transesterification reaction at 270°C in the presence of catalyst. The copolyesters were characterized by13C-NMR and differential scanning calorimetry (DSC). The degradation behavior of PCL byPseudomonas sp. lipase in buffer solution (pH 7) and tetrahydrofuran (THF) was investigated by gel permeation chromatography (GPC) and1H-NMR. From these experiments, it was found thatPseudomonas sp. lipase acted endoenzymatically on PCL. Using this lipase, degradation tests for PET/PCL copolyesters whose PCL content was below 50% by weight were also performed in buffer solution (pH 7). However, evenPseudomonas sp. lipase with high degradation activity on PCL did not easily degrade the PCL unit in PET/PCL copolyesters.  相似文献   

10.
Microwave radiation was used as the energy source for various types of chemical derivatizations of polysaccharides and for the synthesis of biodegradable polyesters in solvent-free or aqueous-based reaction systems. A medium to high degree of substitution was obtained for starch acetates, starch succinates, carboxymethyl konjac, aminated starch, and aminated chitosan. Ring-opening polymerization of lactide and -caprolactone proceeded rapidly even at low power output in the presence of tin octanoate catalyst. Complete monomer conversion and high molecular weight were achieved in less than 6 minutes under nonisothermal conditions. The yield rapidly increased with increasing power output and showed no significant change in a wide range of batch sizes. Polycaprolactone was successfully grafted from starch and konjac acetate in 3 minutes, yielding as high as 24% grafting efficiency and 25% grafting degree.  相似文献   

11.
A two-phase soil washing biosorption process was developed for the remediation of p,p-DDT-contaminated soil. The process involved desorption of contaminants from soil using dilute primary alcohols (40% 1-propanol) followed by contaminant removal from cosolvent solutions using fungal biosorption. Bench scale remediation studies were preformed to simulate ex situ (recycling experiment) or in situ (soil column study) treatment strategies. Both systems were effective at cleaning the soil to below Australian regulatory p,p-DDT levels. After 50–80 hours of soil washing, over 93% of p,p-DDT was removed from the soil(990 mg kg-1 to <65 mg kg-1) using either of these methods.p,p-DDT was removed from the cosolvent phase by sorption onto the fungal biomass. This resulted in only low levels of p,p-DDT remaining in the cosolvent solution(<1.5 mg l-1). The application of both treatment strategies resulted in the rapid clean up of p,p-DDT-contaminated soil and the potential to recycle cosolvent solutions. The ability to recycle cosolvent solutions provides a mechanism for cost reductions of the remediation strategy.  相似文献   

12.
The biodegradation behavior of insoluble crystalline polymers depends on both chemical structure and physical state. The physical state is strongly affected by the molding conditions; moreover the presence of natural hydrophylic substances such as starch can further influence the biodegradation process. This paper examines the biotic and abiotic degradation of thick injection-molded parts, made of pure poly--caprolactone (PCL) at different molecular weights, and of PCL in the presence of starch in the case of a commercial grade of Mater-Bi, produced by Novamont. The abiotic degradation was studied at 25 and 50°C, whereas the biotic degradation was followed in conditions of SCAS (semicontinuous activated sludges) at 25 and 50°C, soil burial, and controlled composting. The physical-chemical modifications provoked at the surface and in the bulk of the samples by the different types of degradation were determined by differential scanning calorimetry, viscometric and gravimetric analysis, scanning electron microscopy, and dynamic mechanical analysis. The mechanical modifications induced by the different environments were followed by tensile tests. It was demonstrated that the presence of starch significantly increases the apparent biodegradation rate of PCL, making even thick parts of ZI01U compatible with the composting process.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

13.
The poly(-caprolactone) (PCL) and poly[(R)-3-hydroxybutyrate] (R-PHB) films with a hydrophilic surface were prepared by the alkali treatment of their as-cast films in NaOH solutions of different concentrations. The alkali-treated PCL and R-PHB films, as well as the as-cast PCL and R-PHB films, were biodegraded in soil controlled at 25°C and the effects of alkali treatment or surface hydrophilicities on their biodegradation were investigated by the use of gravimetry, gel permeation chromatography (GPC), scanning electron microscopy (SEM), and polarization optical microscopy. It became evident that the alkali treatment enhanced the hydrophilicities and biodegradabilities of the PCL and R-PHB films in soil. The biodegradabilities of the as-cast aliphatic polyester films in controlled soil decreased in the following order: PCL > R-PHB > PLLA, in agreement with that in controlled static seawater.  相似文献   

14.
Rheology of Lyocell Solutions from Different Cellulose Sources   总被引:4,自引:0,他引:4  
Rheological measurements were used to characterize the behavior of lyocell solutions, i.e., cellulose dissolved in N-methymorpholine-N-oxide. Cellulose sources included dissolving pulp, kraft pulp, sugar cane fibers, and kenaf fibers. The dominance of viscous behavior, G values, over elastic behavior, G values, is affected by cellulose concentration and molecular weight. At lower concentrations and degrees of polymerization (DP), dissolving pulp solutions show viscous, inelastic behavior at low frequencies. At higher concentration and DP, dissolving pulp solutions are more elastic at higher frequencies. Solutions prepared with kenaf and sugar cane fibers show similar properties to those using pure dissolving pulp, and comparisons suggest the molecular weight and/or the presence of other substances such as lignin in the cellulose from these alternative sources affect the rheology.  相似文献   

15.
To assess the capacity of the natural environment for degrading plastics, the populations of poly(-hydroxybutyrate)(PHB)-and poly(-caprolactone)(PCL)-degrading aerobic microorganisms and their ratios to the total number of microorganisms in soil samples were estimated by the plate count method with agar medium containing emulsified PHB or PCL. The numbers of the degrading microorganisms were determined by counting colonies that formed clear zones on the plate. It was found that PHB- and PCL-degrading (depolymerizing) microorganisms are distributed over many kinds of material, including landfill leachate, compost, sewage sludge, forest soil, farm soil, paddy soil, weed field soil, roadside sand, and pond sediment. Of total colony counts, the percentages of PHB and PCL degrading microorganisms were 0.2–11.4 and 0.8–11.0%, respectively. The results suggest that many kinds of degrading microorganisms are present in each environment and that specific consortia differing in biodegradation capacity are constructed.  相似文献   

16.
A simple and rapid in vitro test was designed for the assessment of the biodegradation of polyester-based plastics by selected biodegrading bacterial strains. Variovorax paradoxus LMG 16137 was used for the degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Acidovorax avenae subsp. avenae LMG 17238 fo the synthetic-based polyesters poly(-caprolactone) (PCL), poly(butylene succinate-co-butylene adipate), and a starch-PCL blend. Degradation by the bacteria was studied in liquid medium with the plastics (films, granules, and injection-molded test bars) as sole sources of carbon. Degradation was followed through gravimetry, growth of the culture, and tensile testing. The effects of incubation time, inoculum density, aeration, incubation temperature, and pH of the medium on the mass loss were investigated and conditions optimized. The test allowed to obtain reproducible results on the mass loss of plastic samples in less than 3 weeks and yielded excellent partially degraded samples for further analysis.  相似文献   

17.
A comparison between numerical simulations and wind tunnel modelling has been performed to examine the variation with streamwise aspect ratio (width/height, W/H) of the mean flow patterns in a street canyon. For this purpose a two-dimensional (2-D) cavity was subjected to a thick turbulent boundary layer flow perpendicular to its principal axis. Five different test cases, W/H = 0.3, 0.5, 0.7, 1.0 and 2.0, have been studied experimentally with flow measurements taken using pulsed-wire anemometry. The results show that the skimming flow regime, with a large vortex in the canyon, occurred for all the cases investigated. For the cavities with W/H 0.7 a weaker secondary circulation developed beneath the main vortex. The narrower the canyon, the smaller the wind speed close to the cavity ground, giving increasingly poor ventilation qualities. The corresponding numerical results were obtained with the Computational Fluid Dynamics (CFD) code CHENSI that uses the standard k- model. The intercomparison showed good agreement in terms of the gross features of the mean flow for all the geometries examined, although some detailed differences were observed.  相似文献   

18.
The results of an investigation aimed at evaluation of the biodegradability of blends of poly(-caprolactone) (PCL) with poly(ethylene terephthalate) (PET) as the major component are reported. Specimens of the blends, as melt extruded films and/or powders, were submitted to degradation tests under different environmental conditions including full-scale composting, soil burial, bench-scale accelerated aerobic degradation, and exposure to axenic cultures and esterolytic enzymes. Indications have been gained that blending in the melt gives rise to insertion of PCL segments in the PET chain. Copolymers thus attained acted as macromolecular compatibilizers, allowing for a complete miscibility of PCL and PET. The biodegradation detected on the blend samples was, however, well below the values expected from chemical composition and behavior of individual homopolymers under the same environmental conditions. The presence of PET as the major component in PET/PCL blends apparently reduces the propensity of PCL to be degraded, at least in the investigated composition range. The degradation data collected under different environmental conditions indicate that the full-scale composting system is the most efficient among the tested degradation procedures.  相似文献   

19.
The cyclic six, seven, and eight-membered oligosaccharides -, -, and -cyclodextrins (CDs) can serve as hosts for a variety of polymer guests to form crystalline inclusion compounds (ICs), wherein the guest polymers are included in the continuous narrow channels (0.5–1.0 nm in diameter) formed by the host CD stacks. Polymers included as guests in CD-ICs are highly extended and segregated from neighboring chains by the walls of the host CD bracelets. As a consequence, when polymer-CD-ICs are treated with solvents for CDs that are non-solvents for the included polymers or with amylase enzymes, the CDs are removed and the guest polymers are coalesced into bulk samples whose structures, morphologies, and even chain conformations are different from those achieved by consolidation from their randomly coiling, entangled solutions and melts. Often these CD-IC coalesced and consequently reorganized polymer samples exhibit properties that are distinct from their normally processed bulk samples. Here we describe the CD-IC processing of several biodegradable/bioabsorbable homopolymers, copolymers, and blends made from poly (L-lactic acid), poly (-caprolactone), and poly (-hydroxybutyrate)s, with special emphasis placed on their improved and controllable properties. For example, the phase segregation and consequent crystallinities of their normally incompatible homopolymer blends and their block copolymers may be controlled and thus improved. In addition, co-inclusion of small molecule guests, such as drugs or anti-bacterials, in their common CD-ICs, and subsequent coalescence, yields well-mixed blends of these biodegradable/bioabsorbable polymers and the small molecule co-guests, which may lead, for example, to the improved delivery of drugs.  相似文献   

20.
The nature and distribution of the acetylated groups were evaluated by 13C-NMR and 1H-NMR. The starch substrate with a DS of 1.5 comprises only two patterns: -(14)-d-glucopyranose and 2,3,6-tri-O-acetyl--(14)-d-glucopyranose. The starch with a DS of 3.0 also comprises two patterns: 2,3,4,6-tetra-O-acetyl--(14)-d-glucopyranose and 2,3,6-tri-O-acetyl--(14)-d-glucopyranose; whereas starch (DS = 1.9) contains 4 patterns: 2,3,6-tri-O-acetyl--(14)-d-glucopyranose, 2,3,4,6-tetra-O-acetyl--(14)-d-glucopyranose terminal, 2,6-di-O-acetyl--(14)-d-glucopyranose, and 3,6-di-O-acetyl--(14)-d-glucopyranose. Using esterase from Viscozyme, it has been possible to hydrolyze up to 7% of the DS 3.0 starch. An -amylase (Fungamyl 800) was then added to these acetylesterases. With a 2.4 FAU/mL fraction of -amylase and 2.4 U/mL from the Viscozyme's acetylesterase, 28% of the acetylated end groups were hydrolyzed for the starch substrates with DS 3.0. Moreover, a synergic action between -amylase and acetylesterase was noticed, allowing fragmentation of 32% for DS 1.5, 30% for DS 1.9, and 11% for DS 3.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号