首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) and its principle metabolites, DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) and DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) are widespread environmental contaminants but little information is available concerning their effects on non-target microflora (especially microalgae and cyanobacteria) and their activities in long-term contaminated soils. For this reason a long-term DDT-contaminated soil was screened for DDT residues and toxicity to microorganisms (bacteria, fungi, algae), microbial biomass and dehydrogenase activity. Also, five pure cultures isolated from various sites (two unicellular green algae and three dinitrogen-fixing cyanobacteria) were tested for their ability to metabolise DDT. Viable counts of bacteria and algae declined with increasing DDT contamination while fungal counts, microbial biomass and dehydrogenase activity increased in medium-level contaminated soil (27 mg DDT residues kg(-1) soil). All the tested parameters were greatly inhibited in high-level contaminated soil (34 mg DDT residues kg(-1) soil). Species composition of algae and cyanobacteria was altered in contaminated soils and sensitive species were eliminated in the medium and high contaminated soils suggesting that these organisms could be useful as bioindicators of pollution. Microbial biomass and dehydrogenase activity may not serve as good bioindicators of pollution since these parameters were potentially influenced by the increase in fungal (probably DDT resistant) counts. All the tested algal species metabolised DDT to DDE and DDD; however, transformation to DDD was more significant in the case of dinitrogen-fixing cyanobacteria.  相似文献   

2.
CL-20 is a relatively new energetic compound with applications in explosive and propellant formulations. Currently, information about the fate of CL-20 in ecological systems is scarce. The aim of this study is to evaluate the biodegradability of CL-20 in soil environments. Four soils were used where initial CL-20 concentrations (above water solubility) ranged from 125 to 1500 mg of CL-20 per kg dry soil (corresponding to the concentrations derived from unexploded ordnance, low order detonation, or manufacturing spills). CL-20 appears to be biodegradable in soil under anaerobic conditions, and additions of organic substrates can substantially accelerate this process. However, CL-20 is not degraded in soil under aerobic conditions kept in the dark at temperatures up to 30 degrees C without organic amendments. Additions of starch or cellulose promote the biodegradation of CL-20 under aerobic conditions. Soil microbial community mediated biodegradation and plant uptake appears to enhance CL-20 biodegradation, the latter suggesting a possible route for CL-20 to entry in the food chain.  相似文献   

3.
Electrokinetic techniques have been used to stimulate the removal of organic pollutants within soil, by directing contaminant migration to where remediation may be more easily achieved. The effect of this and other physical remediation techniques on the health of soil microbial communities has been poorly studied and indeed, largely ignored. This study reports the impact on soil microbial communities during the application of an electric field within ex situ laboratory soil microcosms contaminated with pentachlorophenol (PCP; 100mg kg(-1) oven dry soil). Electrokinetics reduced counts of culturable bacteria and fungi, soil microbial respiration and carbon substrate utilisation, especially close to the acidic anode where PCP accumulated (36d), perhaps exacerbated by the greater toxicity of PCP at lower soil pH. There is little doubt that a better awareness of the interactions between soil electrokinetic processes and microbial communities is key to improving the efficacy and sustainability of this remediation strategy.  相似文献   

4.
Increasing evidence suggests that the use of a single bioassay will never provide a full picture of the quality of the environment. Only a test battery, composed of bioassays of different animal and plant species from different trophic levels will reduce uncertainty, allowing an accurate assessment of the quality of the environment. In the present study, a test battery composed of 20 bioassays of varying biological endpoints has been compared Apart from lethality and reproductive failure in earthworms, springtails, nematoda, algae and vascular plants, these endpoints also included bioavailibility of metals (bacteria), heat-shock induction (nematodes, algae), DNA damage (bacteria, earthworm, vascular plants), β-galactosidase (Daphnia) and esterase activity (algae) and a range of immunological parameters (earthworm). Four chemicals (cadmium, phenol, pentachlorophenol and triflurahn) — each representing a different toxic mode of action — were applied in a dilution series (from 1 mg/kg up to 1000 mg/kg) onto OECD standard soil. The tests have been performed both on these artificially contaminated soil samples and on aqueous extracts subsequently obtained from these soils. The results show that the immunological parameters and the loss of weight in the earthworms were among the most sensitive solid phase assays. Esterase inhibition and heat-shock induction in algae were shown to be extremely sensitive when applied to soil extracts. As previously shown at the species level, no single biological endpoint was shown to be the most sensitive for all four modes of toxic action.  相似文献   

5.
The toxicity of a polycyclic aromatic hydrocarbon (PAH) mixture was assessed on the indigenous microbial communities of a natural freshwater sediment. The fate and effects of the PAH mixture (phenanthrene, fluoranthene and benzo(k)fluoranthene) were studied over 28 days. Bacterial communities were described by bacterial counts (total bacteria and viable bacteria), and by some hydrolytic enzyme activities (beta-glucosidase and leucine-aminopeptidase), PAH concentrations were measured in the overlying waters and in the sediments. No effect of PAH was detected at 30 mg/kg for all bacterial parameters. At 300 mg/kg, the quantity of total bacteria and the proportion of viable bacteria markedly decreased, compared to the control (0 mg PAH/kg). At 300 mg/kg, an increase of the beta-glucosidase activity and a decrease of the leucine-aminopeptidase activity were observed. For all treatments, the benzo(k)fluoranthene concentration in the sediment was stable over 28 days whereas, in the same time, only 3-6% of the initial concentrations of phenanthrene and fluoranthene remained. This study shows that (1) PAH induce perturbations of sediment microbial communities in terms of density and metabolism (but not always as an inhibition), (2) indigenous bacteria of sediments might be used for toxicity assessment of specific organic pollutants, (3) native microorganisms of sediment seem to have a high capacity for PAH degradation, depending on the physico-chemical properties and the bioavailability of the substance encountered.  相似文献   

6.
Increasingly often soil residual concentrations of pharmaceutical antibiotics are detected, while their ecotoxic relevance is scarcely known. Thus, dose related effects of two antibiotics, sulfapyridine and oxytetracycline, on microorganisms of two different topsoils were investigated. The fumigation-extracted microbial C (E(C)) and ergosterol were determined to indicate soil microbial and fungal biomass, respectively. Microbial activity was tested as basal respiration (BR), dehydrogenase activity (DHA), substrate-induced respiration (SIR), and Fe(III) reduction. The BR and DHA were uninfluenced even at antibiotic concentrations of 1000 microg g(-1). This revealed that an activation of microbial growth through nutrient substrate addition is required to test possible effects of the bacteriostatic antibiotics. In addition, the effects of both antibiotics were time dependent, showing that short-term tests were not suitable. Clear dose-response relations were determined with SIR when the short-term incubation of 4h was extended into the growth phase of the microorganisms (24 and 48 h). The Fe(III) reduction test, with a 7-d incubation, was also found to be suitable for toxicity testing of antibiotics in soils. Effective doses inhibiting the microbial activity by 10% (ED(10)) ranged from total antibiotic concentrations of 0.003-7.35 microg g(-1), depending on the antibiotic compound and its soil adsorption. Effective solution concentrations (EC(10)), calculated from distribution coefficients, ranged from 0.2 to 160 ng g(-1). The antibiotics significantly (p<0.05) reduced numbers of soil bacteria, resulting in dose related shifts in the fungal:bacterial ratio, which increased during 14 d, as determined from analysis of ergosterol and E(C). It was concluded that pharmaceutical antibiotics can exert a temporary selective pressure on soil microorganisms even at environmentally relevant concentrations.  相似文献   

7.
Nonylphenol (NP), nonlyphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) were determined in different freshwater organisms from the surface waters in the Glatt Valley, Switzerland. Rather high concentrations of the compounds investigated have been found to occur in macrophytic algae, particularly Cladophora glomerata (up to 38 mg kg(-1), 80 mg kg(-1), and 28 mg kg(-1) of NP, NP1EO and NP2EO, respectively), the bioconcentration factors of NP reaching up to 10,000. The concentrations in fish were much lower (NP: < 0.03-1.6 mg kg(-1), NP1EO: 0.06-7.0 mg kg(-1), and NP2EO: <0.03-3.1 mg kg(-1) indicating that biomagnification did not take place. Similar concentrations to those in the fish were determined in different tissues of a wild duck. The estimated bioconcentration factors in fish tissues ranged from 13 to 410 for NP, 3 to 300 for NP1EO and 3 to 330 for NP2EO.  相似文献   

8.
The impact of fungicides triadimefon and propiconazole on soil bacterial populations from a strawberry field was investigated. Two fungicides were applied to the soil at concentrations of 10 mg/kg or 100 mg/kg with soil water contents 20.2% (fresh soil water content) or 26.0% (field capacity). Changes in bacterial communities were assessed using DNA extraction, polymerase chain reaction (PCR) amplification of the 16S rDNA and denaturing gradient gel electrophoresis (DGGE). High performance liquid chromatography (HPLC) was utilized to detect the residue of fungicides in soils. The results showed that propiconazole was more persistent than triadimefon in soils, and the two soil water contents did not cause significant differences in dissipation rates between the two fungicides. A high concentration of propiconazole could inhibit the existence of soil microbes while one of triadimefon might induce the microbial population in the first stage. From unweighted pair-group method using arithmetic averages (UPGMA) dendrograms, the effect of triadimefon and propiconazole at the two applied concentrations on a soil bacterial community could be long term. After triadimefon was applied for 60 days and propiconazole for 75 days, the compositions of microbial communities were not recovered. From the viewpoint of environmental protection, it was of significant importance to pay more attention not only to the residues of pesticide but also to the change in soil microbial communities.  相似文献   

9.
Biodegradation of nonylphenol in soil   总被引:8,自引:0,他引:8  
Chang BV  Chiang BW  Yuan SY 《Chemosphere》2007,66(10):1857-1862
We investigated the effects of various factors (brij 30, brij 35, yeast extract, hydrogen peroxide and compost) on the aerobic degradation of nonylphenol (NP) in soil and characterized the structure of the microbial community in that soil. Residues of NP were measured using gas chromatography-mass spectrometry (GC-MS) and a change of microbial communities was demonstrated using denaturing gradient gel electrophoresis (DGGE). The results showed that Taichung sandy clay loam had higher NP degradation rate than Kaoshiung silty clay. The addition of compost, yeast extract (0.5 mg/l), brij 30 (55 microM), or brij 35 (91 microM) enhanced NP degradation, while the addition of hydrogen peroxide (1.0 mg/l) inhibited its degradation. We also found that the addition of various substrates changed the microbial community in the soils. Cytophaga sp. and Ochrobactrum sp. were constantly dominant bacteria under various conditions in the soil.  相似文献   

10.
Arsenic poses a major environmental and human health problem because of its carcinogenic nature and effect on the ecosystem. Therefore, a cost effective and socially acceptable technique is needed for its remediation. The effect of different combinations of compost amended with zeolite and/or iron oxide (up to 20% w/w) was tested on a contaminated soil with high arsenic levels (34470 mg kg(-1)). The bioavailability of arsenic was determined in terms of uptake by rye grass (Lolium perenne L.) under greenhouse experimental conditions. The results indicated that the arsenic concentrations in the rye grass was reduced to 2 mg kg(-1) dry weight by using 15% compost with 5% iron oxide and 15% compost with 5% zeolite. Less than 0.01% of the total arsenic content in the soil was being taken up by the plants. Both treatments were effective in establishing significantly higher plant growth on the contaminated soil compared to other treatments. The results from sequential extraction tests indicated that in all the compost-amended soils, there was a reduction in the soluble fraction (10-37%). Arsenic in soil was examined using Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy. The results indicated that arsenic was distributed mostly within the matrix of iron and oxygen in treated samples. Amongst various treatment mixtures tested, high percent of compost (15%) with zeolite (5%) and/or iron oxide (5%) is effective in reducing arsenic uptake by plants and establish re-vegetation on the contaminated soil.  相似文献   

11.
We investigated the toxicity of an emerging polynitramine energetic material hexanitrohexaazaisowurtzitane (CL-20) to the soil invertebrate species Enchytraeus crypticus by adapting then using the Enchytraeid Reproduction Test (ISO/16387:2003). Studies were designed to develop ecotoxicological benchmark values for ecological risk assessment of the potential impacts of accidental release of this compound into the environment. Tests were conducted in Sassafras Sandy Loam soil, which supports relatively high bioavailability of CL-20. Weathering and aging procedures for CL-20 amended into test soil were incorporated into the study design to produce toxicity data that better reflect soil exposure conditions in the field compared with the toxicity in freshly amended soils. Concentration-response relationships for measurement endpoints were determined using nonlinear regressions. Definitive tests showed that toxicities for E. crypticus adult survival and juvenile production were significantly increased in weathered and aged soil treatments compared with toxicity in freshly amended soil, based on 95% confidence intervals. The median effect concentration (EC50) and EC20 values for juvenile production were 0.3 and 0.1 mg kg-1, respectively, for CL-20 freshly amended into soil, and 0.1 and 0.035 mg kg-1, respectively, for weathered and aged CL-20 soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged CL-20 soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of emerging energetic contaminants in soil.  相似文献   

12.
Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.  相似文献   

13.
This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg(-1) (Na2HAsO4) for 12 weeks in a greenhouse. Soil As concentrations at < or =20 mg kg(-1) enhanced plant growth, with 12-71% biomass increase compared to the control. Such beneficial effects were not observed at >20 mg As kg(-1). Plant As concentrations increased with soil As concentrations, with more As being accumulated in the fronds (aboveground biomass) than in the roots and with maximum frond As concentration being 4675 mg kg(-1). Arsenic uptake by Chinese brake enhanced uptake of nutrient elements K, P, Fe, Mn, and Zn except Ca and Mg, whose concentrations mostly decreased. The contents of non-enzymatic antioxidants (glutathione, acid-soluble thiol) followed similar trends as plant As concentrations, increasing with soil As concentrations, with greater contents in the fronds than in the roots especially when exposed to high As concentrations (>50 mg kg(-1)). The activities of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase) in Chinese brake followed the same trends as plant biomass, increasing with soil As up to 20 mg kg(-1) and then decreased. The results indicated though both enzymatic and non-enzymatic antioxidants played significant roles in As detoxification and hyperaccumulation in Chinese brake, the former is more important at low As exposure (< or =20 mg kg(-1)), whereas the latter is more critical at high As exposure (50-200 mg kg(-1)).  相似文献   

14.
Bioaugmentation-assisted phytoextraction may enhance the phytoextraction efficiency thanks to larger metal mobilization by microbial metabolites. Green fluorescent protein-tagged cells of Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans, able to produce siderophores, were inoculated in an agricultural soil containing Cr (488 mg kg(-1)) and Pb (382 mg kg(-1)) and maize was cultivated. Bacteria were inoculated as free or immobilized cells in Ca-alginate beads, with skim milk in the aim at improving both the bacterial survival and the in situ siderophore production. Skim milk addition increased inoculated Pseudomonads concentration in soil. Soil inoculation with free cells of R. metallidurans supplied with skim milk increased Cr accumulation in maize shoots by a factor of 5.2 and inoculation with immobilized P. aeruginosa cells supplied with skim milk increased Cr and Pb uptake by maize shoots by a factor of 5.4 and 3.8, respectively. However total metal taken up by the whole plant decreases almost always with bioaugmentation. Translocation factor also increased with P. aeruginosa or R. metallidurans by a factor of 6 up to 7. Inoculated bacteria concentration in soil was correlated with metals in the exchangeable fraction. Cr and Pb concentrations in the exchangeable fraction were correlated with metal contents in shoots or roots. Our results suggest that bioaugmentation-assisted phytoextraction is a relevant method in the aim at increasing the phytoextraction rate which usually limits the use of phytoremediation technologies.  相似文献   

15.
The feasibility of reducing children's exposure to lead (Pb) polluted soil in New Orleans is tested. Childcare centers (median = 48 children) are often located in former residences. The extent of soil Pb was determined by selecting centers in both the core and outlying areas. The initial 558 mg/kg median soil Pb (range 14-3692 mg/kg) decreased to median 4.1 mg/kg (range 2.2-26.1 mg/kg) after intervention with geotextile covered by 15 cm of river alluvium. Pb loading decreased from a median of 4887 μg/m(2) (454 μg/ft(2)) range 603-56650 μg/m(2) (56-5263 μg/ft(2)) to a median of 398 μg/m(2) (37 μg/ft(2)) range 86-980 μg/m(2) (8-91 μg/ft(2)). Multi-Response Permutation Procedures indicate similar (P-values = 0.160-0.231) soil Pb at childcare centers compared to soil Pb of nearby residential communities. At ~$100 per child, soil Pb and surface loading were reduced within hours, advancing an upstream intervention conceptualization about Pb exposure prevention.  相似文献   

16.
Enhanced biodegradation of carbofuran (2, 3-dihydro-2, 2 dimethyl-7-benzofuranyl methyl carbamate) is an economically significant, but poorly understood, microbial phenomenon in soil. A series of experiments was conducted to examine short term changes in soil bacterial populations stimulated by carbofuran application at field rates. In the field experiment, commercially formulated carbofuran and butylate (S-ethyl diisobutyl carbamothioate) were applied at 5.6 kg ai ha-1 and 8.4 kg ai ha-1, respectively, on a soil (Putnam silt loam) exhibiting enhanced degradation of carbofuran. In laboratory studies, technical grade carbofuran (20 mg kg-1 soil) was applied to samples of the field soil. Bacterial populations were estimated using non-selective (tryptic soy agar) and selective media containing carbofuran or butylate. Largest population increases in pesticide-treated soil were observed between 7 and 15 days after treatment (DAT) compared to populations in non-treated soil. Significant increases (P less than 0.05) in total bacterial populations and presumed carbofuran-degraders due to carbofuran application were associated with increased populations of Pseudomonas spp. and Flavobacterium spp. Application of carbofuran appeared to provide a competitive advantage to these species over actinomycetes persisting beyond 20 DAT. Growth responses of bacteria to carbofuran in the Putnam soil were compared to those in a native prairie soil (Mexico silt loam), which exhibited a much slower rate of carbofuran degradation. Bacterial population response to carbofuran was measurable, but small and short-lived. Perpetuation of the enhanced degradation phenomenon may lie in a persistent pesticide-induced competitive advantage given to a very small segment of the microbial population. This advantage may not be detectable after 20 days using conventional plating techniques.  相似文献   

17.
Liao M  Chen CL  Zeng LS  Huang CY 《Chemosphere》2007,66(7):1197-1205
A greenhouse pot experiment was conducted to evaluate the impact of different concentrations of lead acetate on soil microbial biomass and community structure during growth of Chinese cabbage (Brassica chinensis) in two different soils. The field soils were used for a small pot, short-term 60-day growth chamber study. The soils were amended with different Pb concentrations, ranging from 0 to 900mgkg(-1) soil. The experimental design was a 2 soilx2 vegetation/non-vegetationx6 treatments (Pb)x3 replicate factorial experiment. At 60 days the study was terminated and soils were analyzed for microbial parameters, namely, microbial biomass, basal respiration and PLFAs. The results indicated that the application of Pb at lower concentrations (100 and 300mgkg(-1)) as lead acetate resulted in a slight increase in soil microbial biomass, whereas Pb concentrations >500mgkg(-1) caused an immediate gradual significant decline in biomass. However, the degree of impact on soil microbial biomass and basal respiration by Pb was related to management (plant vegetation) or the contents of clay and organic matter in soils. The profiles of 21 phospholipid fatty acids (PLFAs) were used to assess whether observed changes in functional microbial parameters were accompanied by changes in the composition of the microbial communities after Pb application at 0, 300 and 900mg Pbkg(-1) soil. The results of principal component analyses (PCA) indicated that there were significant increases in fungi biomarkers of 18:3omega6c, 18:1omega9c and a decrease in cy17:0, which is an indicator of gram-negative bacteria for the high levels of Pb treatments In a word, soil microbial biomass and community structure, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-plant system. However, further studies will be needed to better understand how these changes in microbial community structure might actually impact soil microbial community function.  相似文献   

18.
Cadmium effects on the supra- and subpharyngeal ganglia, neurosecretion and RNA content in the neurosecretory cells were tested in earthworms Dendrobaena veneta exposed to 10 and 50 mg Cd kg(-1) in soil after 20 days of the experiment. Accumulation of cadmium in the ganglia of nervous system was also measured using AAS method. Cadmium was accumulated in the nervous system. The accumulated amount was proportional to Cd soil concentration and the exposure time. A considerable fall in neurosecretion and RNA content in the neurosecretory cells and neurosecretion in the neuropile (the axons) of both tested ganglia was induced by 50 mg Cd kg(-1). It seemed that neurosecretion synthesis and its axonal transport could be suppressed. Cadmium caused degenerative changes as vacuolization of the neurosecretory cells and neuropile in both tested ganglia.  相似文献   

19.
Microbial biomass carbon (Cmic) and soil enzyme activities were measured at 12 sites along a gradient of former emissions of phosphate fertilizer production. Seven years after close down of operation, still moderate to high total concentrations of the dust constituents cadmium (up to 33 mg kg-1 dw), fluoride (5300 mg kg-1 dw) and phosphorous (120,000 mg kg-1 dw) were found in topsoils of contaminated sites. Accumulation of partially decomposed plant matter, soil respiration and dehydrogenase activity paralleled the increase of dust deposits, whereas microbial biomass decreased along the gradient. A significant negative correlation was obtained between the Cmic-to-Corg-ratio and the concentration of contaminants. In contrast, the Cmic-specific respiration (qCO2) and the dehydrogenase activity-to-Cmic-ratio were positively correlated. The low Cmic-values and the enhanced activities in the contaminated soils are suggested as a response of microbial communities to environmental stress or ecosystem disturbances. The apparently missing detrimental effects of the alkaline deposits on soil microbial activities are probably due to the low bioavailability of contaminants in the calcareous soil.  相似文献   

20.
The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号