首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
ABSTRACT: The rates of ice production due to surface heat loss in open water reaches of the St. Lawrence River, between the Ogdensburg-Prescott Boom and the Moses-Saunders Dam, are analyzed for the past 20 winters. Simple statistical parameters for ice production rates and air temperature are determined. Regression analyses for relationships between surface heat loss rates and freezing degree days indicate that an excellent linear correlation exists between these two variables. The study also shows that it is important to consider other heat exchange components, such as the bed heat flux and viscous dissipation, in the total ice production analysis for the river reach.  相似文献   

2.
ABSTRACT: Growing‐season evapotranspiration and surface energy and water balances were investigated for an extensive, bulrush‐dominated wetland in the Upper Klamath National Wildlife Refuge of south‐central Oregon, a semi‐arid region with competing demands for scarce water resources. Turbulent fluxes of sensible and latent heat were measured by eddy covariance for 1.2 to 1.9 days during each of four site visits during late‐May to mid‐October 1997. Mean daytime latent heat flux and the Bowen ratio ranged from 148 to 178 W m?2 and from 0.38 to 0.51, respectively, during late May, mid‐July, and late August site visits. By mid‐October, when the plant canopy had senesced, daytime latent heat flux and the Bowen ratio averaged 46 W m?2 and 2.8, respectively. An hourly Penman‐Monteith (PM) model that was fitted to the surface‐flux data provided values for the surface resistance to water‐vapor diffusion that ranged from 78 s m?1 during late August to 206 s m?1 during mid‐October. Similarly, a Priestley‐Taylor (PT) model provided values for the PT multiplier (a) that ranged from 0.96 during late August to 0.37 during mid‐October. The PM and PT models predicted evapotranspiration totals of 560 and 480 mm, respectively, for May 28 to October 12, 1997.  相似文献   

3.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

4.
陆地生态系统CO_2与水热通量的研究进展   总被引:1,自引:0,他引:1  
陆地生态系统CO2和水热通量研究,一直是全球气候变化研究的热点与难点问题。它对认识生态系统变化规律,预测全球气候变化趋势,评价生态系统的碳固定具有重要的科学意义。涡度相关法被认为是目前测定CO2、水热通量的最可靠方法。国外学者应用此方法解决了均匀下垫面假设下不同类型生态系统的CO2、水热通量的计算问题。在查阅前人研究成果的基础上,分析了陆地生态系统用涡度相关法在能量通量研究中的地位和重要性,评述了生态系统水热平衡的研究意义,总结了我国包括森林、草地、荒漠、农田等不同类型生态系统CO2、水热通量方面最新的研究进展,并对我国生态系统通量未来的研究策略及数据管理提出了建议和展望。  相似文献   

5.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   

6.
It is well established that wet environment potential evapotranspiration (PET) can be reliably estimated using the energy budget at the canopy or land surface. However, in most cases the necessary radiation measurements are not available and, thus, empirical temperature‐based PET models are still widely used, especially in watershed models. Here we question the presumption that empirical PET models require fewer input data than more physically based models. Specifically, we test whether the energy‐budget‐based Priestley‐Taylor (P‐T) model can reliably predict daily PET using primarily air temperature to estimate the radiation fluxes and associated parameters. This method of calculating PET requires only daily minimum and maximum temperature, day of the year, and latitude. We compared PET estimates using directly measured radiation fluxes to PET calculated from temperature‐based radiation estimates at four humid AmeriFlux sites. We found good agreement between P‐T PET calculated from measured radiation fluxes and P‐T PET determined via air temperature. In addition, in three of the four sites, the temperature‐based radiation approximations had a stronger correlation with measured evapotranspiration (ET) during periods of maximal ET than fully empirical Hargreaves, Hamon and Oudin methods. Of the three fully empirical models, the Hargreaves performed the best. Overall, the results suggest that daily PET estimates can be made using a physically based approach even when radiation measurements are unavailable.  相似文献   

7.
Abstract: Urban impervious surfaces absorb and store thermal energy, particularly during warm summer months. During a rainfall/runoff event, thermal energy is transferred from the impervious surface to the runoff, causing it to become warmer. As this higher temperature runoff enters receiving waters, it can be harmful to coldwater habitat. In an urban watershed, impervious asphalt surfaces (roads, parking lots, and driveways) and pervious residential lawns comprise a significant portion of the watershed area. A paired asphalt‐turfgrass sod plot was constructed to compare the thermal runoff characteristics between asphalt and turfgrass sod surfaces, to identify meteorological variables that influence these thermal characteristics, and to evaluate evaporative heat loss for runoff from asphalt surfaces. Rainfall simulations were conducted during the summers of 2004 and 2005 under a range of climatic conditions. Asphalt surface temperatures immediately prior to rainfall simulations averaged 43.6°C and decreased an average of 12.3°C over 60 min as rain cooled the surface. In contrast, presimulation sod surface temperatures averaged only 23.3°C and increased an average of 1.3°C throughout the rainfall events. Heat transferred from the asphalt to the runoff resulted in initial asphalt runoff temperatures averaging 35.0°C that decreased by an average of 4.1°C at the end of the event. Sod runoff temperatures averaged only 25.5°C and remained fairly constant throughout the simulations. Multivariable regression equations were developed to predict (1) average asphalt surface temperature (R2 = 0.90) and average asphalt runoff temperature (R2 = 0.92) as a function of solar radiation, rain temperature, and wind speed, and (2) average sod surface temperature (R2 = 0.85) and average sod runoff temperature (R2 = 0.94) as a function of solar radiation, rain temperature, rain intensity, and wind speed. Based on a heat balance analysis, existing evaporation equations developed from studies on lakes were not adequate to predict evaporation from runoff on a heated impervious surface. The combined heat from the asphalt and sod plots was an average of 38% less than the total heat had the total area consisted solely of asphalt.  相似文献   

8.
ABSTRACT: Winter heat budget and frazil ice production in the St. Lawrence River between the Ogdensburg-Prescott Boom and the Moses-Saunders Power Dam are analyzed. Contributions of each heat exchange component, and spatial distributions of heat exchange rates are calculated for three typical winters. Based on the calculated heat budget, the amount and distribution of frazil ice generated in the study reach is analyzed. The result of this study indicates that the thermal energy contained in the river water flowing into the study reach is a dominate factor in the heat budget analysis. The heat flux from the channel bottom accounts for an important portion of the total heat budget during the ice covered period.  相似文献   

9.
ABSTRACT: Rhodamine WT dye‐tracer injections in rivers of the Willamette Basin yield concentration‐time curves with characteristically long recession times suggestive of active transient storage processes. The scale of drainage areas contributing to the stream reaches studied in the Willamette Basin ranges from 10 to 12,000 km2. A transient storage assessment of the tracer studies has been completed using the U.S. Geological Survey's One‐dimensional Transport with Inflow and Storage (OTIS) model, which incorporates storage exchange and decay functions along with the traditional dispersion and advection transport equation. The analysis estimates solute transport of the dye. It identifies first‐order decay coefficients to be on the order of 10?5/sec for the nonconservative Rhodamine W.T. On an individual subreach basis, the first‐order decay is slower (typically by an order of magnitude) than the transient storage process, indicating that nonconservative tracers may be used to evaluate transient storage in rivers. In the transient storage analysis, a dimensionless parameter (As/A) expresses the spatial extent of storage zone area relative to stream cross section. In certain reaches of Willamette Basin pool‐and‐riffle, gravel‐bed rivers, this parameter was as large as 0.5. A measure of the storage exchange flux was calculated for each stream subreach in the simulation analysis. This storage exchange is shown subjectively to be higher at higher stream discharges. Hyporheic linkage between streams and subsurface flows is the probable physical mechanism contributing to a significant part of this inferred active transient storage. Hyporheic linkages are further suggested by detailed measurements of river discharge with an Acoustic Doppler Current Profiler system delineating zones in two large rivers where water alternately enters and leaves the surface channels through gravel‐and‐cobble riverbeds. Measurements show patterns of hyporheic exchange that are highly variable in time and space.  相似文献   

10.
A novel process for a simultaneous removal of ammonia and organics was developed on the basis of ion exchange and biological reactions. From batch experiments, it was found out that NH4+ could be removed effectively by combining cation exchange and biological nitrification showing 0.98 mg N/m2?s of a maximum flux. On the other hand, the removal of NO3 was 3.5 times faster than NH4+ and the maximum flux was calculated to be 3.4 mg N/m2?s. The systems for NH4+ and NO3 removal were combined for establishing the IEBR process. When the process was operated in a continuous mode, approximately 95.8% of NH4+ was removed showing an average flux of 0.22 mg N/m2·s. The removal efficiency of total nitrogen was calculated as 94.5% whereas that of organics was 99.5%. It was concluded that the IEBR process would be effectively used for a simultaneous removal of NH4+ and organics.  相似文献   

11.
ABSTRACT: Evaporative heat loss is an essential component of any heat budget used for the modeling of lake water temperatures. Seven evaporative heat loss equations were tested in a year-round, physically-based temperature and dissolved oxygen model for lakes. Deciding which equation to choose for use in the year-round model was based on the goodness of fit of the simulated vs. measured surface temperatures, which were taken at a depth of 1 m below the water surface. An equation which includes free and forced convection components and which was previously used for cooling ponds gave the best fit between temperature simulations and measurements.  相似文献   

12.
Historically, many watershed studies have been based on using the streamflow flux, typically from a single gauge at the basin's outlet, to support calibration. In this setting, there is great potential for equifinality of parameters during the optimization process, especially for parameters that are not directly related to streamflow. Therefore, some of the optimal parameter values achieved during the autocalibration process may be physically unrealistic. In recent decades a vast array of data from land surface models and remote sensing platforms can help to constrain hydrologic fluxes such as evapotranspiration (ET). While the spatial resolution of these ancillary datasets varies, the continuous spatial coverage of these gridded datasets provides flux measurements across the entire basin, in stark contrast to point‐based streamflow data. This study uses Global Land Evaporation: the Amsterdam Model data to constrain Soil and Water Assessment Tool parameter values associated with ET to a more physically realistic range. The study area is the Little Washita River Experimental Watershed, in southern Oklahoma. Traditional objective metrics such as the Nash‐Sutcliffe coefficients record no performance improvement after application of this method. However, there is a dramatic increase in the number of days with receding flow where simulations match observed streamflow.  相似文献   

13.
ABSTRACT: A methodology to estimate the average monthly lake evaporation, E(τ), (month τ=1,12) for fresh water bodies located in the northeast United States is presented. The approach combines analysis of at‐site, lake‐specific vertical water temperature profile data and a previously developed regional air temperature based model approximation of the widely accepted modified Penman energy budget estimate of mean monthly potential evaporation, Ep(τ) (mm/day). The paper presents procedures to develop site‐specific estimates of Ep(τ) and to convert water temperature data to average monthly conductive heat flux, G(τ). With monthly estimates of G(τ), the average monthly potential evaporation, Ep(τ), is then convertible to estimates of the average monthly lake evaporation, E(τ). This new method permits a good estimate of site‐specific lake evaporation rates without the data and computational requirements of the Penman energy budget procedure nor the comparatively expensive, time consuming field eddy correlation approach.  相似文献   

14.
It has been documented in the literature that, in some cases, widely used regression‐based models can produce severely biased estimates of long‐term mean river fluxes of various constituents. These models, estimated using sample values of concentration, discharge, and date, are used to compute estimated fluxes for a multiyear period at a daily time step. This study compares results of the LOADEST seven‐parameter model, LOADEST five‐parameter model, and the Weighted Regressions on Time, Discharge, and Season (WRTDS) model using subsampling of six very large datasets to better understand this bias problem. This analysis considers sample datasets for dissolved nitrate and total phosphorus. The results show that LOADEST‐7 and LOADEST‐5, although they often produce very nearly unbiased results, can produce highly biased results. This study identifies three conditions that can give rise to these severe biases: (1) lack of fit of the log of concentration vs. log discharge relationship, (2) substantial differences in the shape of this relationship across seasons, and (3) severely heteroscedastic residuals. The WRTDS model is more resistant to the bias problem than the LOADEST models but is not immune to them. Understanding the causes of the bias problem is crucial to selecting an appropriate method for flux computations. Diagnostic tools for identifying the potential for bias problems are introduced, and strategies for resolving bias problems are described.  相似文献   

15.
Measurements of methane flux at a few inundated sites in China have been extrapolated to obtain estimates on a national scale. To enable those national estimates to be refined and to compare flux from geographically separated sites comprising the same wetland types, we used a closed chamber method to measure methane flux in uninundated Betula platyphylla—and Larix gmelinii—dominated peatlands in the Northeast China. Our measurements were taken from both vegetated and bare soil surfaces, and we compared flux with environmental measures including vegetation biomass, soil temperature and soil characteristics. We found that methane flux was low, and that there were no significant differences between wetland types, indicating that environmental influences were dominant. We found that flux was positively correlated to temperature in the surface layers of the soil, the above-ground biomass of the shrub and herb layers, total soil carbon and total soil nitrogen; and we suggest that emissions may be due to anaerobic microcosms in the surface layers. The methane production potentials of the soils were low and similar between both sites but inconsistent with the differences between fluxes, and inconsistent with production potentials and fluxes reported from the same wetland types elsewhere, indicating that there were subtle environmental differences between wetlands classed as being of the same type. Differences between fluxes in vegetated chambers with bare soil chambers were insignificant, indicating that no methane emission through aerenchyma occurred at our sites. We concluded that wetland type was not an accurate predictor of methane flux.  相似文献   

16.
The performance of the building envelope predominantly determines the ultimate energy performance throughout the lifecycle of a building. A sustainable alternative to enhance roof performance while limiting heat flux through a roof is integrating passive techniques such as green roof. Particularly, green roof performance is sensitive to local climate. The main objective of this study was to evaluate the evapotranspiration effect of an extensive green roof on annual energy consumption of an office building in relation to the humid continental climate of Republic of Korea. The dynamic behavior of green roof and building energy performance were investigated through a parametric simulation method using green roof module in EnergyPlus coupled with jEPlus. Structural data of the reference building and ASHARE 90.1-2007 operational schedules were used as inputs for baseline building model while inputs for the green roof module were based on experimental data sets. Due to the influence of the humid conditions and local wind current on the evapotranspiration process, it was generally found that high leaf area index (LAI) reduced cooling energy demand and somewhat reduced heating energy demand as well; corresponding to the highest daily evapotranspiration fluxes of 4.79 mm day?1 in summer and 1.80 mm day?1 in winter. Increasing LAI from 20% to 100% cover increased evapotranspiration flux by 10.4% in summer and 80.2% in winter. Thus to minimize energy losses in winter, foliage cover must be carefully considered. Within limitations specified, the overall annual building energy consumption deceased by 90.9 GJ (3.7%).  相似文献   

17.
Turf grasses are ubiquitous in the urban landscape of the United States and are often associated with various types of environmental impacts, especially on water resources, yet there have been limited efforts to quantify their total surface and ecosystem functioning, such as their total impact on the continental water budget and potential net ecosystem exchange (NEE). In this study, relating turf grass area to an estimate of fractional impervious surface area, it was calculated that potentially 163,800 km2 (± 35,850 km2) of land are cultivated with turf grasses in the continental United States, an area three times larger than that of any irrigated crop. Using the Biome-BGC ecosystem process model, the growth of warm-season and cool-season turf grasses was modeled at a number of sites across the 48 conterminous states under different management scenarios, simulating potential carbon and water fluxes as if the entire turf surface was to be managed like a well-maintained lawn. The results indicate that well-watered and fertilized turf grasses act as a carbon sink. The potential NEE that could derive from the total surface potentially under turf (up to 17 Tg C/yr with the simulated scenarios) would require up to 695 to 900 liters of water per person per day, depending on the modeled water irrigation practices, suggesting that outdoor water conservation practices such as xeriscaping and irrigation with recycled waste-water may need to be extended as many municipalities continue to face increasing pressures on freshwater.  相似文献   

18.
In this communication, a new design of solar-energy-based water distillation cum drying unit with parabolic reflector has been designed, fabricated, and tested. Bitter gourd and potato slices are chosen as a drying commodity. Thermal performance of the developed system has been evaluated based on the experimental results and using linear regression analysis. Heat transfer coefficients (convective, evaporative, and radiative) for solar distillation system have been observed to be 2.48–4.09, 13.25–52.38, and 8.75–9.66 W/m2°C, respectively. Overall thermal efficiency and exergy efficiency for the distillation system has been found to be 18.77% and 1.2%, respectively. The convective heat transfer coefficient for potato slices are observed higher for initial hours and decreases as the day progresses. The average convective heat transfer coefficients for bitter gourd and potato slices have been observed as 2.18 and 5.04 W/m2°C, respectively. Experimental error in terms of percent uncertainty for bitter gourd and potato slices are found to be 42.93% and 37.06%, respectively. The present design of solar distillation and drying in a single unit could be beneficial for the development of remote, arid, and rural areas.  相似文献   

19.
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings.  相似文献   

20.
A model is developed to predict the evaporative heat transfer coefficient in a horizontal tube-falling evaporator and has been applied to evaluate overall performance of a desalination unit. Performance variation with different parameters like operation temperature, type of water distribution system, mass flow rate of distilled water inside the exchanger are analyzed. It has been observed that the model is able to predict the trends of heat transfer characteristics of the evaporator reasonably well. However, at low liquid film flow rate conditions, the model overpredicts the heat transfer characteristics marginally. In order to improve the evaporative exchanger performance, it is observed that preheating of the liquid film before injection into the evaporator is desirable. Calculations are also performed to estimate the value of overall heat transfer coefficient for a typical desalination unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号